File size: 3,831 Bytes
c108da3
caa64e7
c108da3
f84e083
 
 
9441c54
c108da3
7a31970
4849bdc
f12ecf0
4849bdc
c108da3
4849bdc
f84e083
 
 
ce8dee8
 
f84e083
c108da3
 
f12ecf0
 
f84e083
 
 
 
e40242b
245c296
f84e083
 
 
5b8435c
 
c108da3
 
 
 
 
5b8435c
 
 
c108da3
9441c54
c108da3
 
 
4cc4589
c108da3
4cc4589
 
 
9441c54
 
4cc4589
9441c54
 
 
4cc4589
9441c54
 
c108da3
9441c54
c108da3
d0c61b6
215f4a9
c108da3
215f4a9
d0c61b6
f84e083
c108da3
 
 
 
f84e083
 
c108da3
9441c54
d0c61b6
27153aa
 
 
 
 
 
 
 
 
 
 
 
c108da3
 
 
27153aa
 
 
c108da3
 
 
27153aa
c108da3
9441c54
ce8dee8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json  # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
from transformers import pipeline


nltk.data.path.append(os.getenv('NLTK_DATA'))

app = FastAPI()

# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")

# summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")

summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")

class Item(BaseModel):
    prompt: str
    history: list
    system_prompt: str
    temperature: float = 0.8
    max_new_tokens: int = 12000
    top_p: float = 0.15
    repetition_penalty: float = 1.0

def format_prompt(current_prompt, history):
    formatted_history = "<s>"
    for entry in history:
        if entry["role"] == "user":
            formatted_history += f"[USER] {entry['content']} [/USER]"
        elif entry["role"] == "assistant":
            formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
    formatted_history += f"[USER] {current_prompt} [/USER]</s>"
    return formatted_history


def generate_stream(item: Item) -> Generator[bytes, None, None]:
    formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
    # Estimate token count for the formatted_prompt
    input_token_count = len(nltk.word_tokenize(formatted_prompt))  # NLTK tokenization

    # Ensure total token count doesn't exceed the maximum limit
    max_tokens_allowed = 32768
    max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))

    generate_kwargs = {
        "temperature": item.temperature,
        "max_new_tokens": max_new_tokens_adjusted,
        "top_p": item.top_p,
        "repetition_penalty": item.repetition_penalty,
        "do_sample": True,
        "seed": 42,
    }

    # Stream the response from the InferenceClient
    for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
        # This assumes 'details=True' gives you a structure where you can access the text like this
        chunk = {
            "text": response.token.text,
            "complete": response.generated_text is not None  # Adjust based on how you detect completion
        }
        yield json.dumps(chunk).encode("utf-8") + b"\n"


class SummarizeRequest(BaseModel):
    text: str

@app.post("/generate/")
async def generate_text(item: Item):
    # Stream response back to the client
    return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")

def split_text(text, max_size=1000):
    # Splits the text into chunks of approximately `max_size` words
    words = text.split()
    for i in range(0, len(words), max_size):
        yield ' '.join(words[i:i+max_size])

def summarize_large_text(text):
    chunks = list(split_text(text))
    summaries = [summarizer(chunk, max_length=500, min_length=100, do_sample=False) for chunk in chunks]
    combined_summary = ' '.join(sum[0]['summary_text'] for sum in summaries)
    return combined_summary

@app.post("/summarize")
async def summarize_text(request: SummarizeRequest):
    try:
        # Adjusting summarization for very large texts
        summarized_text = summarize_large_text(request.text)
        return JSONResponse(content={"summary": summarized_text})
    except Exception as e:
        # Handle exceptions that could arise during summarization
        raise HTTPException(status_code=500, detail=str(e))

    
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)