Spaces:
Sleeping
Sleeping
File size: 4,573 Bytes
c108da3 caa64e7 c108da3 f84e083 9441c54 c108da3 7a31970 4849bdc 7bc74bc 4849bdc c108da3 4849bdc f84e083 ce8dee8 f84e083 c0b9a69 d11c4a1 c108da3 f12ecf0 f84e083 e40242b 245c296 f84e083 5b8435c c108da3 5b8435c c108da3 9441c54 c108da3 4cc4589 c108da3 4cc4589 9441c54 4cc4589 9441c54 4cc4589 9441c54 c108da3 9441c54 c108da3 d0c61b6 215f4a9 c108da3 215f4a9 d0c61b6 f84e083 c108da3 f84e083 c108da3 9441c54 d0c61b6 d11c4a1 1aafe2e d11c4a1 c1fff5f d11c4a1 c1fff5f 27153aa c0b9a69 98648e1 d33d65c c0b9a69 d33d65c c108da3 c0b9a69 d33d65c c108da3 c0b9a69 c108da3 27153aa c0b9a69 9441c54 ce8dee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
from transformers import pipeline, AutoTokenizer,AutoModelForSeq2SeqLM
nltk.data.path.append(os.getenv('NLTK_DATA'))
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
# summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 12000
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(current_prompt, history):
formatted_history = "<s>"
for entry in history:
if entry["role"] == "user":
formatted_history += f"[USER] {entry['content']} [/USER]"
elif entry["role"] == "assistant":
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
return formatted_history
def generate_stream(item: Item) -> Generator[bytes, None, None]:
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
# Estimate token count for the formatted_prompt
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
# Ensure total token count doesn't exceed the maximum limit
max_tokens_allowed = 32768
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": max_new_tokens_adjusted,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42,
}
# Stream the response from the InferenceClient
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
# This assumes 'details=True' gives you a structure where you can access the text like this
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None # Adjust based on how you detect completion
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
class SummarizeRequest(BaseModel):
text: str
@app.post("/generate/")
async def generate_text(item: Item):
# Stream response back to the client
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
def split_text_by_tokens(text, max_tokens=1024):
print("Tokenizing text...")
tokens = tokenizer.tokenize(text)
chunks = []
token_counts = []
for i in range(0, len(tokens), max_tokens):
chunk = tokenizer.convert_tokens_to_string(tokens[i:i+max_tokens])
chunks.append(chunk)
token_counts.append(len(tokenizer.encode(chunk))) # Count tokens of the current chunk
print("Tokenization complete.")
return chunks, token_counts
# Load the tokenizer and model from Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained("nsi319/legal-pegasus")
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/legal-pegasus")
def summarize_legal_text(text):
# Ensure the text is within the maximum length limit for the model
inputs = tokenizer.encode(text, return_tensors='pt', max_length=1024, truncation=True)
# Generate summary
summary_ids = model.generate(
inputs,
num_beams=9,
no_repeat_ngram_size=3,
length_penalty=2.0,
min_length=150,
max_length=250,
early_stopping=True
)
# Decode generated tokens to a string
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
class SummarizeRequest(BaseModel):
text: str
@app.post("/summarize")
async def summarize_text(request: SummarizeRequest):
try:
# Use the newly defined summarization function
summarized_text = summarize_legal_text(request.text)
return JSONResponse(content={"summary": summarized_text})
except Exception as e:
print(f"Error during summarization: {e}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|