PacmanAI-2 / main.py
Marroco93's picture
no message
10d17a3
raw
history blame
6.67 kB
import re
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json # Asegúrate de que esta línea esté al principio del archivo
import nltk
import os
import google.protobuf # This line should execute without errors if protobuf is installed correctly
import sentencepiece
from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification,AutoModel
import spacy
import numpy as np
nltk.data.path.append(os.getenv('NLTK_DATA'))
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 4000
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(current_prompt, history):
formatted_history = "<s>"
for entry in history:
if entry["role"] == "user":
formatted_history += f"[USER] {entry['content']} [/USER]"
elif entry["role"] == "assistant":
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
return formatted_history
def generate_stream(item: Item) -> Generator[bytes, None, None]:
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
# Estimate token count for the formatted_prompt
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
# Ensure total token count doesn't exceed the maximum limit
max_tokens_allowed = 32768
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": max_new_tokens_adjusted,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42,
}
# Stream the response from the InferenceClient
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
# This assumes 'details=True' gives you a structure where you can access the text like this
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None # Adjust based on how you detect completion
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
class SummarizeRequest(BaseModel):
text: str
@app.post("/generate/")
async def generate_text(item: Item):
# Stream response back to the client
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
class TextRequest(BaseModel):
text: str
def preprocess_text(text: str) -> str:
# Normalize whitespace and strip punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'[^\w\s]', '', text)
return text
def embed_text(text: str) -> np.ndarray:
# Load the JinaAI/jina-embeddings-v2-base-en model
model_name = "JinaAI/jina-embeddings-v2-base-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors='pt')
embeddings = model(**inputs).pooler_output.numpy()
return embeddings
def semantic_matching(text, context):
text_embeddings = embed_text(text)
context_embeddings = [embed_text(ctx) for ctx in context]
# Calculate cosine similarity between text and context embeddings
similarities = np.dot(text_embeddings, context_embeddings.T)
# Find the most similar sentence in the context
most_similar_idx = np.argmax(similarities)
return context[most_similar_idx]
def handle_endpoint(text):
# Define your large context here
context = [
"This is a sample context sentence 1.",
"Another context sentence to provide additional information.",
"This context sentence introduces a new topic.",
"Some additional details about the new topic are provided here.",
"Context sentences can be added or removed as needed.",
"The context should cover a range of topics and provide relevant information.",
"Make sure the context is diverse and representative of the domain.",
]
# Perform semantic matching to retrieve the most relevant portion of the context
relevant_context = semantic_matching(text, context)
return relevant_context
@app.post("/process_document")
async def process_document(request: TextRequest):
try:
processed_text = preprocess_text(request.text)
embedded_text = embed_text(processed_text)
relevant_context = handle_endpoint(processed_text)
return {
"embedded_text": embedded_text.tolist(),
"relevant_context": relevant_context
}
except Exception as e:
print(f"Error during document processing: {e}")
raise HTTPException(status_code=500, detail=str(e))
# @app.post("/summarize")
# async def summarize(request: TextRequest):
# try:
# # Preprocess and segment the text
# processed_text = preprocess_text(request.text)
# segments = segment_text(processed_text)
# # Classify each segment safely
# classified_segments = []
# for segment in segments:
# try:
# result = classifier(segment)
# classified_segments.append(result)
# except Exception as e:
# print(f"Error classifying segment: {e}")
# classified_segments.append({"error": str(e)})
# # Optional: Reduce tokens or summarize
# reduced_texts = []
# for segment in segments:
# try:
# reduced_text, token_count = reduce_tokens(segment)
# reduced_texts.append((reduced_text, token_count))
# except Exception as e:
# print(f"Error during token reduction: {e}")
# reduced_texts.append(("Error", 0))
# return {
# "classified_segments": classified_segments,
# "reduced_texts": reduced_texts
# }
# except Exception as e:
# print(f"Error during token reduction: {e}")
# raise HTTPException(status_code=500, detail=str(e))
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=8000)