Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import StreamingResponse | |
from fastapi.responses import JSONResponse | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
import uvicorn | |
from typing import Generator | |
import json # Asegúrate de que esta línea esté al principio del archivo | |
import nltk | |
import os | |
from transformers import pipeline | |
nltk.data.path.append(os.getenv('NLTK_DATA')) | |
app = FastAPI() | |
# Initialize the InferenceClient with your model | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
# summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
class Item(BaseModel): | |
prompt: str | |
history: list | |
system_prompt: str | |
temperature: float = 0.8 | |
max_new_tokens: int = 12000 | |
top_p: float = 0.15 | |
repetition_penalty: float = 1.0 | |
def format_prompt(current_prompt, history): | |
formatted_history = "<s>" | |
for entry in history: | |
if entry["role"] == "user": | |
formatted_history += f"[USER] {entry['content']} [/USER]" | |
elif entry["role"] == "assistant": | |
formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]" | |
formatted_history += f"[USER] {current_prompt} [/USER]</s>" | |
return formatted_history | |
def generate_stream(item: Item) -> Generator[bytes, None, None]: | |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) | |
# Estimate token count for the formatted_prompt | |
input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization | |
# Ensure total token count doesn't exceed the maximum limit | |
max_tokens_allowed = 32768 | |
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count)) | |
generate_kwargs = { | |
"temperature": item.temperature, | |
"max_new_tokens": max_new_tokens_adjusted, | |
"top_p": item.top_p, | |
"repetition_penalty": item.repetition_penalty, | |
"do_sample": True, | |
"seed": 42, | |
} | |
# Stream the response from the InferenceClient | |
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): | |
# This assumes 'details=True' gives you a structure where you can access the text like this | |
chunk = { | |
"text": response.token.text, | |
"complete": response.generated_text is not None # Adjust based on how you detect completion | |
} | |
yield json.dumps(chunk).encode("utf-8") + b"\n" | |
class SummarizeRequest(BaseModel): | |
text: str | |
async def generate_text(item: Item): | |
# Stream response back to the client | |
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") | |
def split_text(text, max_size=1000): | |
# Splits the text into chunks of approximately `max_size` words | |
words = text.split() | |
for i in range(0, len(words), max_size): | |
yield ' '.join(words[i:i+max_size]) | |
def summarize_large_text(text): | |
chunks = list(split_text(text)) | |
summaries = [summarizer(chunk, max_length=500, min_length=100, do_sample=False) for chunk in chunks] | |
combined_summary = ' '.join(sum[0]['summary_text'] for sum in summaries) | |
return combined_summary | |
async def summarize_text(request: SummarizeRequest): | |
try: | |
# Adjusting summarization for very large texts | |
summarized_text = summarize_large_text(request.text) | |
return JSONResponse(content={"summary": summarized_text}) | |
except Exception as e: | |
# Handle exceptions that could arise during summarization | |
raise HTTPException(status_code=500, detail=str(e)) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |