Spaces:
Runtime error
Runtime error
File size: 3,259 Bytes
c9db1a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
from extras.BLIP.models.med import BertConfig, BertModel
from transformers import BertTokenizer
import torch
from torch import nn
import torch.nn.functional as F
from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
class BLIP_ITM(nn.Module):
def __init__(self,
med_config = 'configs/med_config.json',
image_size = 384,
vit = 'base',
vit_grad_ckpt = False,
vit_ckpt_layer = 0,
embed_dim = 256,
):
"""
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
"""
super().__init__()
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
self.tokenizer = init_tokenizer()
med_config = BertConfig.from_json_file(med_config)
med_config.encoder_width = vision_width
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
text_width = self.text_encoder.config.hidden_size
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
def forward(self, image, caption, match_head='itm'):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
return_tensors="pt").to(image.device)
if match_head=='itm':
output = self.text_encoder(text.input_ids,
attention_mask = text.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,
)
itm_output = self.itm_head(output.last_hidden_state[:,0,:])
return itm_output
elif match_head=='itc':
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
return_dict = True, mode = 'text')
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
sim = image_feat @ text_feat.t()
return sim
def blip_itm(pretrained='',**kwargs):
model = BLIP_ITM(**kwargs)
if pretrained:
model,msg = load_checkpoint(model,pretrained)
assert(len(msg.missing_keys)==0)
return model
|