File size: 16,423 Bytes
c9db1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
'''

 * Copyright (c) 2022, salesforce.com, inc.

 * All rights reserved.

 * SPDX-License-Identifier: BSD-3-Clause

 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause

 * By Junnan Li

'''
from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
from transformers import BertTokenizer
import transformers
transformers.logging.set_verbosity_error()

import torch
from torch import nn
import torch.nn.functional as F

from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint

class BLIP_Pretrain(nn.Module):
    def __init__(self,                 

                 med_config = 'configs/bert_config.json',  

                 image_size = 224,

                 vit = 'base',

                 vit_grad_ckpt = False,

                 vit_ckpt_layer = 0,                    

                 embed_dim = 256,     

                 queue_size = 57600,

                 momentum = 0.995,

                 ):
        """

        Args:

            med_config (str): path for the mixture of encoder-decoder model's configuration file

            image_size (int): input image size

            vit (str): model size of vision transformer

        """               
        super().__init__()
        
        self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
        
        if vit=='base':
            checkpoint = torch.hub.load_state_dict_from_url(
                url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
                map_location="cpu", check_hash=True)
            state_dict = checkpoint["model"]     
            msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
        elif vit=='large':
            from timm.models.helpers import load_custom_pretrained
            from timm.models.vision_transformer import default_cfgs
            load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])        
               
        self.tokenizer = init_tokenizer()   
        encoder_config = BertConfig.from_json_file(med_config)
        encoder_config.encoder_width = vision_width
        self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
        self.text_encoder.resize_token_embeddings(len(self.tokenizer)) 

        text_width = self.text_encoder.config.hidden_size
        
        self.vision_proj = nn.Linear(vision_width, embed_dim)
        self.text_proj = nn.Linear(text_width, embed_dim)

        self.itm_head = nn.Linear(text_width, 2) 
        
        # create momentum encoders  
        self.visual_encoder_m, vision_width = create_vit(vit,image_size)              
        self.vision_proj_m = nn.Linear(vision_width, embed_dim)
        self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)      
        self.text_proj_m = nn.Linear(text_width, embed_dim)
        
        self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
                            [self.vision_proj,self.vision_proj_m],
                            [self.text_encoder,self.text_encoder_m],
                            [self.text_proj,self.text_proj_m],
                           ]       
        self.copy_params()

        # create the queue
        self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
        self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
        self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))  

        self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
        self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
        
        self.queue_size = queue_size
        self.momentum = momentum
        self.temp = nn.Parameter(0.07*torch.ones([]))   
        
        # create the decoder
        decoder_config = BertConfig.from_json_file(med_config)
        decoder_config.encoder_width = vision_width        
        self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)    
        self.text_decoder.resize_token_embeddings(len(self.tokenizer)) 
        tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
        
        
    def forward(self, image, caption, alpha):
        with torch.no_grad():
            self.temp.clamp_(0.001,0.5)
        
        image_embeds = self.visual_encoder(image) 
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)        
        image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)          
        
        text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30, 
                              return_tensors="pt").to(image.device)  
        text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,                      
                                        return_dict = True, mode = 'text')            
        text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)                 
             
        # get momentum features
        with torch.no_grad():
            self._momentum_update()
            image_embeds_m = self.visual_encoder_m(image) 
            image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)  
            image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)                   
            
            text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,                      
                                                return_dict = True, mode = 'text')    
            text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) 
            text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)

            sim_i2t_m = image_feat_m @ text_feat_all / self.temp  
            sim_t2i_m = text_feat_m @ image_feat_all / self.temp 

            sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
            sim_targets.fill_diagonal_(1)          

            sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
            sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets        

        sim_i2t = image_feat @ text_feat_all / self.temp
        sim_t2i = text_feat @ image_feat_all / self.temp
                             
        loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
        loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() 

        loss_ita = (loss_i2t+loss_t2i)/2

        self._dequeue_and_enqueue(image_feat_m, text_feat_m)        

        ###============== Image-text Matching ===================###
        encoder_input_ids = text.input_ids.clone()
        encoder_input_ids[:,0] = self.tokenizer.enc_token_id
        
        # forward the positve image-text pair
        bs = image.size(0)
        output_pos = self.text_encoder(encoder_input_ids,
                                       attention_mask = text.attention_mask,
                                       encoder_hidden_states = image_embeds,
                                       encoder_attention_mask = image_atts,      
                                       return_dict = True,
                                      )            
        with torch.no_grad():       
            weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4 
            weights_t2i.fill_diagonal_(0)            
            weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4  
            weights_i2t.fill_diagonal_(0)   
            
        # select a negative image for each text
        image_embeds_neg = []    
        for b in range(bs):
            neg_idx = torch.multinomial(weights_t2i[b], 1).item()
            image_embeds_neg.append(image_embeds[neg_idx])
        image_embeds_neg = torch.stack(image_embeds_neg,dim=0)   

        # select a negative text for each image
        text_ids_neg = []
        text_atts_neg = []
        for b in range(bs):
            neg_idx = torch.multinomial(weights_i2t[b], 1).item()
            text_ids_neg.append(encoder_input_ids[neg_idx])
            text_atts_neg.append(text.attention_mask[neg_idx])

        text_ids_neg = torch.stack(text_ids_neg,dim=0)   
        text_atts_neg = torch.stack(text_atts_neg,dim=0)      

        text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)     
        text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)     

        image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
        image_atts_all = torch.cat([image_atts,image_atts],dim=0)

        output_neg = self.text_encoder(text_ids_all,
                                       attention_mask = text_atts_all,
                                       encoder_hidden_states = image_embeds_all,
                                       encoder_attention_mask = image_atts_all,      
                                       return_dict = True,
                                      )                            

        vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
        vl_output = self.itm_head(vl_embeddings)            

        itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
                               dim=0).to(image.device)
        loss_itm = F.cross_entropy(vl_output, itm_labels)  
        
        ##================= LM ========================##     
        decoder_input_ids = text.input_ids.clone()      
        decoder_input_ids[:,0] = self.tokenizer.bos_token_id
        decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100) 

        decoder_output = self.text_decoder(decoder_input_ids, 
                                           attention_mask = text.attention_mask, 
                                           encoder_hidden_states = image_embeds,
                                           encoder_attention_mask = image_atts,                  
                                           labels = decoder_targets,
                                           return_dict = True,   
                                          )   
          
        loss_lm = decoder_output.loss                
        return loss_ita, loss_itm, loss_lm
 


    @torch.no_grad()    
    def copy_params(self):
        for model_pair in self.model_pairs:           
            for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
                param_m.data.copy_(param.data)  # initialize
                param_m.requires_grad = False  # not update by gradient    

            
    @torch.no_grad()        
    def _momentum_update(self):
        for model_pair in self.model_pairs:           
            for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
                param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)

                        
    @torch.no_grad()
    def _dequeue_and_enqueue(self, image_feat, text_feat):
        # gather keys before updating queue
        image_feats = concat_all_gather(image_feat)
        text_feats = concat_all_gather(text_feat)

        batch_size = image_feats.shape[0]

        ptr = int(self.queue_ptr)
        assert self.queue_size % batch_size == 0  # for simplicity

        # replace the keys at ptr (dequeue and enqueue)
        self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
        self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
        ptr = (ptr + batch_size) % self.queue_size  # move pointer

        self.queue_ptr[0] = ptr 


def blip_pretrain(**kwargs):
    model = BLIP_Pretrain(**kwargs)
    return model 


@torch.no_grad()
def concat_all_gather(tensor):
    """

    Performs all_gather operation on the provided tensors.

    *** Warning ***: torch.distributed.all_gather has no gradient.

    """
    tensors_gather = [torch.ones_like(tensor)
        for _ in range(torch.distributed.get_world_size())]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output     


from typing import List
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
    uninitialized_encoder_weights: List[str] = []
    if decoder.__class__ != encoder.__class__:
        print(
            f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
        )

    def tie_encoder_to_decoder_recursively(

        decoder_pointer: nn.Module,

        encoder_pointer: nn.Module,

        module_name: str,

        uninitialized_encoder_weights: List[str],

        skip_key: str,

        depth=0,

    ):
        assert isinstance(decoder_pointer, nn.Module) and isinstance(
            encoder_pointer, nn.Module
        ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
        if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
            assert hasattr(encoder_pointer, "weight")
            encoder_pointer.weight = decoder_pointer.weight
            if hasattr(decoder_pointer, "bias"):
                assert hasattr(encoder_pointer, "bias")
                encoder_pointer.bias = decoder_pointer.bias                
            print(module_name+' is tied')    
            return

        encoder_modules = encoder_pointer._modules
        decoder_modules = decoder_pointer._modules
        if len(decoder_modules) > 0:
            assert (
                len(encoder_modules) > 0
            ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

            all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
            encoder_layer_pos = 0
            for name, module in decoder_modules.items():
                if name.isdigit():
                    encoder_name = str(int(name) + encoder_layer_pos)
                    decoder_name = name
                    if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                        encoder_modules
                    ) != len(decoder_modules):
                        # this can happen if the name corresponds to the position in a list module list of layers
                        # in this case the decoder has added a cross-attention that the encoder does not have
                        # thus skip this step and subtract one layer pos from encoder
                        encoder_layer_pos -= 1
                        continue
                elif name not in encoder_modules:
                    continue
                elif depth > 500:
                    raise ValueError(
                        "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                    )
                else:
                    decoder_name = encoder_name = name
                tie_encoder_to_decoder_recursively(
                    decoder_modules[decoder_name],
                    encoder_modules[encoder_name],
                    module_name + "/" + name,
                    uninitialized_encoder_weights,
                    skip_key,
                    depth=depth + 1,
                )
                all_encoder_weights.remove(module_name + "/" + encoder_name)

            uninitialized_encoder_weights += list(all_encoder_weights)

    # tie weights recursively
    tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)