Spaces:
Running
Running
File size: 5,657 Bytes
cc2f913 4854265 cc2f913 4854265 cc2f913 4854265 cc2f913 eb8a07c cc2f913 eb8a07c 597f1d0 eb8a07c cc2f913 4854265 cc2f913 4854265 cc2f913 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
import eureqa
#Change the following code to your file
################################################################################
TRIALS_FOLDER = 'trials'
NUMBER_TRIALS_PER_RUN = 1
def run_trial(args):
"""Evaluate the model loss using the hyperparams in args
:args: A dictionary containing all hyperparameters
:returns: Dict with status and loss from cross-validation
"""
print("Running on", args)
for key in 'niterations npop ncyclesperiteration topn'.split(' '):
args[key] = int(args[key])
if args['npop'] < 50 or args['ncyclesperiteration'] < 3:
print("Bad parameters")
return {'status': 'ok', 'loss': np.inf}
def handler(signum, frame):
print("Took too long. Skipping.")
raise ValueError("Takes too long")
maxTime = 120
ntrials = 3
equation_file = f'.hall_of_fame_{np.random.rand():f}.csv'
try:
trials = []
for i in range(1, 4):
subtrials = []
for j in range(ntrials):
trial = eureqa.eureqa(
test=f"simple{i}",
threads=4,
binary_operators=["plus", "mult", "pow", "div"],
unary_operators=["cos", "exp", "sin", "log"],
equation_file=equation_file,
timeout=maxTime,
**args)
if len(trial) == 0: raise ValueError
subtrials.append(np.min(trial['MSE']))
trials.append(np.log(np.median(subtrials) + 0.1))
except ValueError:
return {
'status': 'ok', # or 'fail' if nan loss
'loss': np.inf
}
loss = np.average(trials)
print(args, "got", loss)
return {
'status': 'ok', # or 'fail' if nan loss
'loss': loss
}
space = {
'niterations': hp.qlognormal('niterations', np.log(10), 0.5, 1),
'npop': hp.qlognormal('npop', np.log(100), 0.5, 1),
'ncyclesperiteration': hp.qlognormal('ncyclesperiteration', np.log(5000), 0.5, 1),
'topn': hp.quniform('topn', 1, 30, 1),
'annealing': hp.choice('annealing', [False, True]),
'alpha': hp.lognormal('alpha', np.log(10.0), 0.5),
'parsimony': hp.lognormal('parsimony', np.log(1e-3), 0.5),
'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 0.5),
'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 0.5),
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 0.5),
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 0.5),
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 0.5),
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 0.5),
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 0.5),
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 0.5),
'weightDoNothing': hp.lognormal('weightDoNothing', np.log(1.0), 0.5),
}
################################################################################
def merge_trials(trials1, trials2_slice):
"""Merge two hyperopt trials objects
:trials1: The primary trials object
:trials2_slice: A slice of the trials object to be merged,
obtained with, e.g., trials2.trials[:10]
:returns: The merged trials object
"""
max_tid = 0
if len(trials1.trials) > 0:
max_tid = max([trial['tid'] for trial in trials1.trials])
for trial in trials2_slice:
tid = trial['tid'] + max_tid + 1
hyperopt_trial = Trials().new_trial_docs(
tids=[None],
specs=[None],
results=[None],
miscs=[None])
hyperopt_trial[0] = trial
hyperopt_trial[0]['tid'] = tid
hyperopt_trial[0]['misc']['tid'] = tid
for key in hyperopt_trial[0]['misc']['idxs'].keys():
hyperopt_trial[0]['misc']['idxs'][key] = [tid]
trials1.insert_trial_docs(hyperopt_trial)
trials1.refresh()
return trials1
loaded_fnames = []
trials = None
# Run new hyperparameter trials until killed
while True:
np.random.seed()
# Load up all runs:
import glob
path = TRIALS_FOLDER + '/*.pkl'
for fname in glob.glob(path):
if fname in loaded_fnames:
continue
trials_obj = pkl.load(open(fname, 'rb'))
n_trials = trials_obj['n']
trials_obj = trials_obj['trials']
if len(loaded_fnames) == 0:
trials = trials_obj
else:
print("Merging trials")
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
loaded_fnames.append(fname)
print("Loaded trials", len(loaded_fnames))
if len(loaded_fnames) == 0:
trials = Trials()
n = NUMBER_TRIALS_PER_RUN
try:
best = fmin(run_trial,
space=space,
algo=tpe.suggest,
max_evals=n + len(trials.trials),
trials=trials,
verbose=1,
rstate=np.random.RandomState(np.random.randint(1,10**6))
)
except hyperopt.exceptions.AllTrialsFailed:
continue
print('current best', best)
hyperopt_trial = Trials()
# Merge with empty trials dataset:
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + '.pkl'
pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
loaded_fnames.append(new_fname)
|