File size: 76,049 Bytes
cfca8a4
ec0919d
a3a2513
 
c51257e
5908dc9
5a01e6f
69fc6d0
bdd2ad4
0a0cfdc
bdd2ad4
03e8b8d
0683428
501ebd3
6baa534
4819728
 
c51257e
4819728
 
6baa534
 
 
 
 
 
 
 
 
5a01e6f
1443fba
744d6e2
b3fd9db
5bbefa6
5908dc9
97f43e5
e1ac1c9
5908dc9
7d4300a
 
 
3972e78
 
7d4300a
 
 
 
84fdbc6
 
 
 
 
 
 
 
 
 
7d4300a
 
84fdbc6
7d4300a
 
84fdbc6
 
 
 
7d4300a
 
 
 
84fdbc6
0d60bb3
84fdbc6
 
5908dc9
cfca8a4
7d4300a
2ff5ae9
66b15fc
 
32a2de6
97f43e5
66b15fc
 
 
97f43e5
 
358f0ab
 
181a454
 
 
 
 
 
eb96ede
181a454
 
eb96ede
7d4300a
eb96ede
181a454
 
 
61138f4
7d4300a
 
 
 
358f0ab
181a454
 
358f0ab
66b15fc
358f0ab
 
181a454
62d539c
7d4300a
181a454
 
97f43e5
181a454
69fc6d0
181a454
69fc6d0
 
 
 
 
 
 
 
181a454
358f0ab
181a454
 
7d4300a
 
 
 
 
 
 
0dfd8e3
 
b5b74c3
0dfd8e3
 
b5b74c3
0dfd8e3
 
 
 
7d4300a
2ff5ae9
af14165
 
 
 
66b15fc
2ff5ae9
af14165
de2d4ba
af14165
 
a2862ab
2ff5ae9
af14165
 
 
 
66b15fc
2ff5ae9
af14165
 
 
7d4300a
f544d25
3ef5500
 
 
 
3e8d44d
32a2de6
2fbf19c
5a01e6f
2fbf19c
 
 
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
83d8e67
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d8e67
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ef535
9490776
32a2de6
 
 
 
 
19ef535
9490776
32a2de6
 
 
 
 
 
b3fd9db
32a2de6
 
 
b3fd9db
32a2de6
 
6e2fc47
32a2de6
 
6e2fc47
32a2de6
 
49212e1
32a2de6
 
 
49212e1
32a2de6
 
 
6e2fc47
32a2de6
 
 
c3134ec
32a2de6
 
 
6e2fc47
32a2de6
 
6e2fc47
32a2de6
 
 
 
6e2fc47
32a2de6
 
6e2fc47
32a2de6
 
 
 
6e2fc47
32a2de6
 
e0c7f38
32a2de6
 
 
e0c7f38
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef5500
 
 
 
25e0721
 
 
 
 
 
3e8d44d
 
 
 
32a2de6
 
23834a6
32a2de6
 
 
 
 
 
 
 
 
 
893fdd2
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d8e67
32a2de6
 
 
 
 
 
 
83d8e67
32a2de6
 
 
 
 
83d8e67
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6881818
 
 
 
 
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfa9a72
 
 
 
 
 
 
 
 
 
 
32a2de6
cfa9a72
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b15fc
 
a47d265
c2b20b6
83d8e67
 
9ff66c9
32a2de6
 
 
 
 
 
859581c
83d8e67
32a2de6
 
 
 
 
 
 
 
66b15fc
32a2de6
 
 
1443fba
 
 
32a2de6
1443fba
 
 
 
 
 
 
32a2de6
 
 
 
 
 
 
 
 
1443fba
32a2de6
 
 
 
 
66b15fc
1443fba
32a2de6
 
3ef5500
25e0721
3e8d44d
32a2de6
 
 
 
 
66b15fc
 
 
 
 
 
83d8e67
 
 
66b15fc
32a2de6
1443fba
66b15fc
32a2de6
 
9490776
32a2de6
 
 
 
 
9490776
32a2de6
 
 
 
 
 
 
 
9490776
32a2de6
 
 
 
 
 
 
 
 
 
9490776
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
9490776
32a2de6
 
 
9490776
32a2de6
 
 
 
 
 
9490776
32a2de6
 
 
 
 
 
 
 
 
 
3ef5500
25e0721
3e8d44d
32a2de6
9490776
32a2de6
 
 
9490776
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443fba
 
 
32a2de6
 
 
 
 
 
a828c23
32a2de6
 
 
 
 
 
 
 
 
1443fba
 
 
 
 
66b15fc
4173a8b
 
70a6907
b7e75e1
 
 
32a2de6
 
66b15fc
32a2de6
ec8124e
32a2de6
ec8124e
 
66b15fc
ec8124e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b15fc
ec8124e
 
 
 
 
 
 
 
 
 
 
 
 
 
66b15fc
 
bd90cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be87321
780b3a0
be87321
 
 
 
 
 
 
518eb85
fbbe578
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9750ff9
32a2de6
ec8124e
fbbe578
518eb85
32a2de6
35ca811
32a2de6
 
fbbe578
66b15fc
32a2de6
 
 
66b15fc
32a2de6
 
 
66b15fc
ec8124e
 
 
66b15fc
f06ee71
 
 
 
 
 
 
 
 
 
3e8d44d
 
 
 
 
f06ee71
 
 
6881818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4819728
6881818
 
 
 
 
4819728
6881818
 
 
 
 
 
 
 
 
 
 
 
 
4819728
32a2de6
 
e47833c
db9848f
66b15fc
32a2de6
 
 
 
66b15fc
32a2de6
 
66b15fc
19ef535
9490776
32a2de6
66b15fc
4819728
 
 
 
32a2de6
 
66b15fc
32a2de6
 
 
 
66b15fc
32a2de6
19ef535
 
 
 
66b15fc
32a2de6
 
66b15fc
32a2de6
406ae3e
32a2de6
83d8e67
 
 
 
 
 
c7187a6
32a2de6
 
 
 
 
 
 
9490776
 
 
 
 
 
 
32a2de6
 
 
11f524f
 
4819728
c51257e
 
32a2de6
 
 
 
 
66b15fc
 
 
32a2de6
66b15fc
 
 
4819728
32a2de6
3ef5500
 
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
19ef535
9490776
32a2de6
 
 
 
 
3ef5500
 
 
 
32a2de6
 
 
 
 
 
 
 
 
 
db9848f
32a2de6
 
 
 
 
 
 
 
 
 
 
3ef5500
 
 
32a2de6
 
66b15fc
32a2de6
 
 
 
 
 
19ef535
32a2de6
 
9490776
32a2de6
 
 
 
9490776
66b15fc
3ef5500
 
 
32a2de6
66b15fc
 
 
 
 
 
3ef5500
66b15fc
32a2de6
66b15fc
6881818
32a2de6
 
66b15fc
32a2de6
 
 
 
66b15fc
32a2de6
 
 
6881818
 
 
 
32a2de6
 
 
6881818
 
 
32a2de6
 
 
 
 
 
 
 
 
 
19ef535
9490776
32a2de6
 
66b15fc
3dff82f
 
6881818
 
 
 
3dff82f
 
6881818
3dff82f
6881818
 
 
3dff82f
32a2de6
 
3dff82f
32a2de6
 
 
 
3dff82f
 
 
50f37a0
66b15fc
40f498c
e0e2933
3dff82f
fc68797
5841096
e0e2933
40f498c
e0e2933
5d9233a
d3e3eb4
744d6e2
5841096
 
 
66b15fc
32a2de6
49212e1
 
66b15fc
49212e1
5d9233a
40f498c
66b15fc
 
 
 
 
 
 
 
358f0ab
 
3dff82f
32a2de6
358f0ab
 
 
3dff82f
32a2de6
 
358f0ab
 
32a2de6
c8dffac
3dff82f
df48549
3dff82f
df48549
 
 
 
 
40f498c
df48549
c8dffac
3dff82f
c8dffac
3dff82f
c8dffac
 
40f498c
b113ee4
32a2de6
66b15fc
 
32a2de6
 
 
 
 
 
 
 
66b15fc
 
f87c7e9
3ef5500
66b15fc
358f0ab
 
66b15fc
 
40f498c
32a2de6
 
40f498c
66b15fc
32a2de6
f06ee71
32a2de6
 
3dff82f
66b15fc
32a2de6
 
66b15fc
32a2de6
 
3dff82f
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed19905
3dff82f
32a2de6
 
 
 
 
3ef5500
25e0721
66b15fc
 
32a2de6
 
66b15fc
3dff82f
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
3dff82f
66b15fc
f87c7e9
3ef5500
32a2de6
66b15fc
 
 
32a2de6
 
66b15fc
 
3dff82f
32a2de6
40f498c
66b15fc
 
32a2de6
 
66b15fc
32a2de6
 
66b15fc
32a2de6
66b15fc
32a2de6
66b15fc
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ef535
9490776
32a2de6
 
 
 
 
 
 
0387e10
32a2de6
 
 
 
 
 
 
 
 
3e8d44d
 
 
 
 
 
 
32a2de6
3ef5500
 
 
f06ee71
 
6881818
 
4819728
 
43b3838
 
e7b4ea9
bad0567
 
 
 
 
 
 
 
 
 
32a2de6
 
3ef5500
32a2de6
 
19ef535
9490776
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6881818
32a2de6
fbb7cf7
32a2de6
 
 
fbb7cf7
 
 
 
 
32a2de6
fbb7cf7
 
 
32a2de6
 
3e8d44d
32a2de6
3e8d44d
 
 
 
32a2de6
 
 
 
3e8d44d
32a2de6
3e8d44d
 
 
32a2de6
 
 
3e8d44d
 
 
32a2de6
 
 
 
 
 
9750ff9
 
 
3e8d44d
83d8e67
 
 
 
 
 
 
3e8d44d
 
83d8e67
 
e790ec3
83d8e67
 
 
 
 
 
 
 
 
 
 
 
32a2de6
83d8e67
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
4173a8b
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
9490776
32a2de6
9490776
 
32a2de6
 
4173a8b
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4173a8b
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9490776
32a2de6
9490776
 
32a2de6
 
4173a8b
 
32a2de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9490776
32a2de6
9490776
 
66b15fc
 
 
 
fbb7cf7
 
 
 
 
 
 
 
 
66b15fc
32a2de6
af14165
32a2de6
af14165
f06ee71
66b15fc
 
af14165
 
 
 
 
 
 
 
 
 
 
66b15fc
f06ee71
af14165
 
 
 
 
 
 
 
66b15fc
 
 
 
 
6881818
 
 
 
 
19d80b0
6881818
 
 
 
 
 
 
19d80b0
6881818
 
 
 
 
 
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
3dff82f
66b15fc
 
 
32a2de6
83d8e67
32a2de6
66b15fc
 
af14165
66b15fc
 
 
 
 
32a2de6
66b15fc
 
 
 
 
 
 
 
 
 
b4cb407
3dff82f
 
 
66b15fc
 
 
 
 
 
 
 
 
 
7602382
3dff82f
 
 
 
 
66b15fc
 
 
af14165
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14165
 
66b15fc
af14165
66b15fc
 
 
 
 
 
 
 
 
 
 
 
32a2de6
66b15fc
 
ec8124e
32a2de6
3ef5500
32a2de6
 
 
 
 
3ef5500
 
 
32a2de6
 
 
 
 
 
 
19ef535
32a2de6
 
 
 
 
 
 
 
 
 
 
3ef5500
4173a8b
 
32a2de6
4173a8b
 
32a2de6
 
 
3ef5500
 
 
32a2de6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
import os
import sys
import numpy as np
import pandas as pd
from sklearn.utils import check_array, check_consistent_length, check_random_state
import sympy
from sympy import sympify
import re
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import warnings
from multiprocessing import cpu_count
from sklearn.base import BaseEstimator, RegressorMixin, MultiOutputMixin
from sklearn.utils.validation import (
    _check_feature_names_in,
    check_X_y,
    check_is_fitted,
)

from .julia_helpers import (
    init_julia,
    _get_julia_project,
    is_julia_version_greater_eq,
    _escape_filename,
    _add_sr_to_julia_project,
    import_error_string,
)
from .export_numpy import CallableEquation
from .deprecated import make_deprecated_kwargs_for_pysr_regressor


Main = None  # TODO: Rename to more descriptive name like "julia_runtime"

already_ran = False

sympy_mappings = {
    "div": lambda x, y: x / y,
    "mult": lambda x, y: x * y,
    "sqrt_abs": lambda x: sympy.sqrt(abs(x)),
    "square": lambda x: x**2,
    "cube": lambda x: x**3,
    "plus": lambda x, y: x + y,
    "sub": lambda x, y: x - y,
    "neg": lambda x: -x,
    "pow": lambda x, y: abs(x) ** y,
    "cos": sympy.cos,
    "sin": sympy.sin,
    "tan": sympy.tan,
    "cosh": sympy.cosh,
    "sinh": sympy.sinh,
    "tanh": sympy.tanh,
    "exp": sympy.exp,
    "acos": sympy.acos,
    "asin": sympy.asin,
    "atan": sympy.atan,
    "acosh": lambda x: sympy.acosh(abs(x) + 1),
    "acosh_abs": lambda x: sympy.acosh(abs(x) + 1),
    "asinh": sympy.asinh,
    "atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
    "atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
    "abs": abs,
    "mod": sympy.Mod,
    "erf": sympy.erf,
    "erfc": sympy.erfc,
    "log_abs": lambda x: sympy.log(abs(x)),
    "log10_abs": lambda x: sympy.log(abs(x), 10),
    "log2_abs": lambda x: sympy.log(abs(x), 2),
    "log1p_abs": lambda x: sympy.log(abs(x) + 1),
    "floor": sympy.floor,
    "ceil": sympy.ceiling,
    "sign": sympy.sign,
    "gamma": sympy.gamma,
}


def pysr(X, y, weights=None, **kwargs):  # pragma: no cover
    warnings.warn(
        "Calling `pysr` is deprecated. Please use `model = PySRRegressor(**params); model.fit(X, y)` going forward.",
        FutureWarning,
    )
    model = PySRRegressor(**kwargs)
    model.fit(X, y, weights=weights)
    return model.equations


def _process_constraints(binary_operators, unary_operators, constraints):
    constraints = constraints.copy()
    for op in unary_operators:
        if op not in constraints:
            constraints[op] = -1
    for op in binary_operators:
        if op not in constraints:
            constraints[op] = (-1, -1)
        if op in ["plus", "sub", "+", "-"]:
            if constraints[op][0] != constraints[op][1]:
                raise NotImplementedError(
                    "You need equal constraints on both sides for - and +, due to simplification strategies."
                )
        elif op in ["mult", "*"]:
            # Make sure the complex expression is in the left side.
            if constraints[op][0] == -1:
                continue
            if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
                constraints[op][0], constraints[op][1] = (
                    constraints[op][1],
                    constraints[op][0],
                )
    return constraints


def _maybe_create_inline_operators(binary_operators, unary_operators):
    global Main
    binary_operators = binary_operators.copy()
    unary_operators = unary_operators.copy()
    for op_list in [binary_operators, unary_operators]:
        for i, op in enumerate(op_list):
            is_user_defined_operator = "(" in op

            if is_user_defined_operator:
                Main.eval(op)
                # Cut off from the first non-alphanumeric char:
                first_non_char = [j for j, char in enumerate(op) if char == "("][0]
                function_name = op[:first_non_char]
                # Assert that function_name only contains
                # alphabetical characters, numbers,
                # and underscores:
                if not re.match(r"^[a-zA-Z0-9_]+$", function_name):
                    raise ValueError(
                        f"Invalid function name {function_name}. "
                        "Only alphanumeric characters, numbers, and underscores are allowed."
                    )
                op_list[i] = function_name
    return binary_operators, unary_operators


def _check_assertions(
    X,
    use_custom_variable_names,
    variable_names,
    weights,
    y,
):
    # Check for potential errors before they happen
    assert len(X.shape) == 2
    assert len(y.shape) in [1, 2]
    assert X.shape[0] == y.shape[0]
    if weights is not None:
        assert weights.shape == y.shape
        assert X.shape[0] == weights.shape[0]
    if use_custom_variable_names:
        assert len(variable_names) == X.shape[1]


def best(*args, **kwargs):  # pragma: no cover
    raise NotImplementedError(
        "`best` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.sympy()` to get the sympy representation of the best equation."
    )


def best_row(*args, **kwargs):  # pragma: no cover
    raise NotImplementedError(
        "`best_row` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can run `print(model)` to view the best equation, or `model.get_best()` to return the best equation's row in `model.equations`."
    )


def best_tex(*args, **kwargs):  # pragma: no cover
    raise NotImplementedError(
        "`best_tex` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.latex()` to get the sympy representation of the best equation."
    )


def best_callable(*args, **kwargs):  # pragma: no cover
    raise NotImplementedError(
        "`best_callable` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can use `.predict(X)` to use the best callable."
    )


# Class validation constants
VALID_OPTIMIZER_ALGORITHMS = ["NelderMead", "BFGS"]


class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
    """
    High-performance symbolic regression.

    This is the scikit-learn interface for SymbolicRegression.jl.
    This model will automatically search for equations which fit
    a given dataset subject to a particular loss and set of
    constraints.

    Parameters
    ----------
    model_selection : str, default="best"
        Model selection criterion. Can be 'accuracy' or 'best'.
        `"accuracy"` selects the candidate model with the lowest loss
        (highest accuracy). `"best"` selects the candidate model with
        the lowest sum of normalized loss and complexity.

    binary_operators : list[str], default=["+", "-", "*", "/"]
        List of strings giving the binary operators in Julia's Base.

    unary_operators : list[str], default=None
        Same as :param`binary_operators` but for operators taking a
        single scalar.

    niterations : int, default=40
        Number of iterations of the algorithm to run. The best
        equations are printed and migrate between populations at the
        end of each iteration.

    populations : int, default=15
        Number of populations running.

    population_size : int, default=33
        Number of individuals in each population.

    max_evals : int, default=None
        Limits the total number of evaluations of expressions to
        this number.

    maxsize : int, default=20
        Max size of an equation.

    maxdepth : int, default=None
        Max depth of an equation. You can use both :param`maxsize` and
        :param`maxdepth`. :param`maxdepth` is by default set to equal
        :param`maxsize`, which means that it is redundant.

    warmup_maxsize_by : float, default=0.0
        Whether to slowly increase max size from a small number up to
        the maxsize (if greater than 0).  If greater than 0, says the
        fraction of training time at which the current maxsize will
        reach the user-passed maxsize.

    timeout_in_seconds : float, default=None
        Make the search return early once this many seconds have passed.

    constraints : dict[str, int | tuple[int,int]], default=None
        Dictionary of int (unary) or 2-tuples (binary), this enforces
        maxsize constraints on the individual arguments of operators.
        E.g., `'pow': (-1, 1)` says that power laws can have any
        complexity left argument, but only 1 complexity exponent. Use
        this to force more interpretable solutions.

    nested_constraints : dict[str, dict], default=None
        Specifies how many times a combination of operators can be
        nested. For example, `{"sin": {"cos": 0}}, "cos": {"cos": 2}}`
        specifies that `cos` may never appear within a `sin`, but `sin`
        can be nested with itself an unlimited number of times. The
        second term specifies that `cos` can be nested up to 2 times
        within a `cos`, so that `cos(cos(cos(x)))` is allowed
        (as well as any combination of `+` or `-` within it), but
        `cos(cos(cos(cos(x))))` is not allowed. When an operator is not
        specified, it is assumed that it can be nested an unlimited
        number of times. This requires that there is no operator which
        is used both in the unary operators and the binary operators
        (e.g., `-` could be both subtract, and negation). For binary
        operators, you only need to provide a single number: both
        arguments are treated the same way, and the max of each
        argument is constrained.

    loss : str, default="L2DistLoss()"
        String of Julia code specifying the loss function. Can either
        be a loss from LossFunctions.jl, or your own loss written as a
        function. Examples of custom written losses include:
        `myloss(x, y) = abs(x-y)` for non-weighted, or
        `myloss(x, y, w) = w*abs(x-y)` for weighted.

        Among the included losses, these are as follows.
        Regression: `LPDistLoss{P}()`, `L1DistLoss()`,
        `L2DistLoss()` (mean square), `LogitDistLoss()`,
        `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`,
        `PeriodicLoss(c)`, `QuantileLoss(τ)`.
        Classification: `ZeroOneLoss()`, `PerceptronLoss()`,
        `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`,
        `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
        `SigmoidLoss()`, `DWDMarginLoss(q)`.

    complexity_of_operators : dict[str, float], default=None
        If you would like to use a complexity other than 1 for an
        operator, specify the complexity here. For example,
        `{"sin": 2, "+": 1}` would give a complexity of 2 for each use
        of the `sin` operator, and a complexity of 1 for each use of
        the `+` operator (which is the default). You may specify real
        numbers for a complexity, and the total complexity of a tree
        will be rounded to the nearest integer after computing.

    complexity_of_constants : float, default=1
        Complexity of constants.

    complexity_of_variables : float, default=1
        Complexity of variables.

    parsimony : float, default=0.0032
        Multiplicative factor for how much to punish complexity.

    use_frequency : bool, default=True
        Whether to measure the frequency of complexities, and use that
        instead of parsimony to explore equation space. Will naturally
        find equations of all complexities.

    use_frequency_in_tournament : bool, default=True
        Whether to use the frequency mentioned above in the tournament,
        rather than just the simulated annealing.

    alpha : float, default=0.1
        Initial temperature for simulated annealing
        (requires :param`annealing` to be `True`).

    annealing : bool, default=True
        Whether to use annealing. You should (and it is default).

    early_stop_condition : float, default=None
        Stop the search early if this loss is reached.

    ncyclesperiteration : int, default=550
        Number of total mutations to run, per 10 samples of the
        population, per iteration.

    fraction_replaced : float, default=0.000364
        How much of population to replace with migrating equations from
        other populations.

    fraction_replaced_hof : float, default=0.035
        How much of population to replace with migrating equations from
        hall of fame.

    weight_add_node : float, default=0.79
        Relative likelihood for mutation to add a node.

    weight_insert_node : float, default=5.1
        Relative likelihood for mutation to insert a node.

    weight_delete_node : float, default=1.7
        Relative likelihood for mutation to delete a node.

    weight_do_nothing : float, default=0.21
        Relative likelihood for mutation to leave the individual.

    weight_mutate_constant : float, default=0.048
        Relative likelihood for mutation to change the constant slightly
        in a random direction.

    weight_mutate_operator : float, default=0.47
        Relative likelihood for mutation to swap an operator.

    weight_randomize : float, default=0.00023
        Relative likelihood for mutation to completely delete and then
        randomly generate the equation

    weight_simplify : float, default=0.0020
        Relative likelihood for mutation to simplify constant parts by evaluation

    crossover_probability : float, default=0.066
        Absolute probability of crossover-type genetic operation, instead of a mutation.

    skip_mutation_failures : bool, default=True
        Whether to skip mutation and crossover failures, rather than
        simply re-sampling the current member.

    migration : bool, default=True
        Whether to migrate.

    hof_migration : bool, default=True
        Whether to have the hall of fame migrate.

    topn : int, default=12
        How many top individuals migrate from each population.

    should_optimize_constants : bool, default=True
        Whether to numerically optimize constants (Nelder-Mead/Newton)
        at the end of each iteration.

    optimizer_algorithm : str, default="BFGS"
        Optimization scheme to use for optimizing constants. Can currently
        be `NelderMead` or `BFGS`.

    optimizer_nrestarts : int, default=2
        Number of time to restart the constants optimization process with
        different initial conditions.

    optimize_probability : float, default=0.14
        Probability of optimizing the constants during a single iteration of
        the evolutionary algorithm.

    optimizer_iterations : int, default=8
        Number of iterations that the constants optimizer can take.

    perturbation_factor : float, default=0.076
        Constants are perturbed by a max factor of
        (perturbation_factor*T + 1). Either multiplied by this or
        divided by this.

    tournament_selection_n : int, default=10
        Number of expressions to consider in each tournament.

    tournament_selection_p : float, default=0.86
        Probability of selecting the best expression in each
        tournament. The probability will decay as p*(1-p)^n for other
        expressions, sorted by loss.

    procs : int, default=multiprocessing.cpu_count()
        Number of processes (=number of populations running).

    multithreading : bool, default=True
        Use multithreading instead of distributed backend.
        Using procs=0 will turn off both.

    cluster_manager : str, default=None
        For distributed computing, this sets the job queue system. Set
        to one of "slurm", "pbs", "lsf", "sge", "qrsh", "scyld", or
        "htc". If set to one of these, PySR will run in distributed
        mode, and use `procs` to figure out how many processes to launch.

    batching : bool, default=False
        Whether to compare population members on small batches during
        evolution. Still uses full dataset for comparing against hall
        of fame.

    batch_size : int, default=50
        The amount of data to use if doing batching.

    fast_cycle : bool, default=False (experimental)
        Batch over population subsamples. This is a slightly different
        algorithm than regularized evolution, but does cycles 15%
        faster. May be algorithmically less efficient.

    precision : int, default=32
        What precision to use for the data. By default this is 32
        (float32), but you can select 64 or 16 as well.

    random_state : int, Numpy RandomState instance or None, default=None
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    deterministic : bool, default=False
        Make a PySR search give the same result every run.
        To use this, you must turn off parallelism
        (with :param`procs`=0, :param`multithreading`=False),
        and set :param`random_state` to a fixed seed.

    warm_start : bool, default=False
        Tells fit to continue from where the last call to fit finished.
        If false, each call to fit will be fresh, overwriting previous results.

    verbosity : int, default=1e9
        What verbosity level to use. 0 means minimal print statements.

    update_verbosity : int, default=None
        What verbosity level to use for package updates.
        Will take value of :param`verbosity` if not given.

    progress : bool, default=True
        Whether to use a progress bar instead of printing to stdout.

    equation_file : str, default=None
        Where to save the files (.csv separated by |).

    temp_equation_file : bool, default=False
        Whether to put the hall of fame file in the temp directory.
        Deletion is then controlled with the :param`delete_tempfiles`
        parameter.

    tempdir : str, default=None
        directory for the temporary files.

    delete_tempfiles : bool, default=True
        Whether to delete the temporary files after finishing.

    julia_project : str, default=None
        A Julia environment location containing a Project.toml
        (and potentially the source code for SymbolicRegression.jl).
        Default gives the Python package directory, where a
        Project.toml file should be present from the install.

    update: bool, default=True
        Whether to automatically update Julia packages.

    output_jax_format : bool, default=False
        Whether to create a 'jax_format' column in the output,
        containing jax-callable functions and the default parameters in
        a jax array.

    output_torch_format : bool, default=False
        Whether to create a 'torch_format' column in the output,
        containing a torch module with trainable parameters.

    extra_sympy_mappings : dict[str, Callable], default=None
        Provides mappings between custom :param`binary_operators` or
        :param`unary_operators` defined in julia strings, to those same
        operators defined in sympy.
        E.G if `unary_operators=["inv(x)=1/x"]`, then for the fitted
        model to be export to sympy, :param`extra_sympy_mappings`
        would be `{"inv": lambda x: 1/x}`.

    extra_jax_mappings : dict[Callable, str], default=None
        Similar to :param`extra_sympy_mappings` but for model export
        to jax. The dictionary maps sympy functions to jax functions.
        For example: `extra_jax_mappings={sympy.sin: "jnp.sin"}` maps
        the `sympy.sin` function to the equivalent jax expression `jnp.sin`.

    extra_torch_mappings : dict[Callable, Callable], default=None
        The same as :param`extra_jax_mappings` but for model export
        to pytorch. Note that the dictionary keys should be callable
        pytorch expressions.
        For example: `extra_torch_mappings={sympy.sin: torch.sin}`

    denoise : bool, default=False
        Whether to use a Gaussian Process to denoise the data before
        inputting to PySR. Can help PySR fit noisy data.

    select_k_features : int, default=None
         whether to run feature selection in Python using random forests,
         before passing to the symbolic regression code. None means no
         feature selection; an int means select that many features.

    kwargs : dict, default=None
        Supports deprecated keyword arguments. Other arguments will
        result in an error.

    Attributes
    ----------
    equations_ : pandas.DataFrame
        DataFrame containing the results of model fitting.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

    nout_ : int
        Number of output dimensions.

    selection_mask_ : list[int] of length `select_k_features`
        List of indices for input features that are selected when
        :param`select_k_features` is set.

    tempdir_ : Path
        Path to the temporary equations directory.

    equation_file_ : str
        Output equation file name produced by the julia backend.

    raw_julia_state_ : tuple[list[PyCall.jlwrap], PyCall.jlwrap]
        The state for the julia SymbolicRegression.jl backend post fitting.

    Notes
    -----
    Most default parameters have been tuned over several example equations,
    but you should adjust `niterations`, `binary_operators`, `unary_operators`
    to your requirements. You can view more detailed explanations of the options
    on the [options page](https://astroautomata.com/PySR/#/options) of the
    documentation.

    Examples
    --------
    >>> import numpy as np
    >>> from pysr import PySRRegressor
    >>> randstate = np.random.RandomState(0)
    >>> X = 2 * randstate.randn(100, 5)
    >>> # y = 2.5372 * cos(x_3) + x_0 - 0.5
    >>> y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5
    >>> model = PySRRegressor(
    ...     niterations=40,
    ...     binary_operators=["+", "*"],
    ...     unary_operators=[
    ...         "cos",
    ...         "exp",
    ...         "sin",
    ...         "inv(x) = 1/x",  # Custom operator (julia syntax)
    ...     ],
    ...     model_selection="best",
    ...     loss="loss(x, y) = (x - y)^2",  # Custom loss function (julia syntax)
    ... )
    >>> model.fit(X, y)
    >>> model
    PySRRegressor.equations = [
    0         0.000000                                          3.8552167  3.360272e+01           1
    1         1.189847                                          (x0 * x0)  3.110905e+00           3
    2         0.010626                          ((x0 * x0) + -0.25573406)  3.045491e+00           5
    3         0.896632                              (cos(x3) + (x0 * x0))  1.242382e+00           6
    4         0.811362                ((x0 * x0) + (cos(x3) * 2.4384754))  2.451971e-01           8
    5  >>>>  13.733371          (((cos(x3) * 2.5382) + (x0 * x0)) + -0.5)  2.889755e-13          10
    6         0.194695  ((x0 * x0) + (((cos(x3) + -0.063180044) * 2.53...  1.957723e-13          12
    7         0.006988  ((x0 * x0) + (((cos(x3) + -0.32505524) * 1.538...  1.944089e-13          13
    8         0.000955  (((((x0 * x0) + cos(x3)) + -0.8251649) + (cos(...  1.940381e-13          15
    ]
    >>> model.score(X, y)
    1.0
    >>> model.predict(np.array([1,2,3,4,5]))
    array([-1.15907818, -1.15907818, -1.15907818, -1.15907818, -1.15907818])
    """

    def __init__(
        self,
        model_selection="best",
        *,
        binary_operators=None,
        unary_operators=None,
        niterations=40,
        populations=15,
        population_size=33,
        max_evals=None,
        maxsize=20,
        maxdepth=None,
        warmup_maxsize_by=0.0,
        timeout_in_seconds=None,
        constraints=None,
        nested_constraints=None,
        loss="L2DistLoss()",
        complexity_of_operators=None,
        complexity_of_constants=1,
        complexity_of_variables=1,
        parsimony=0.0032,
        use_frequency=True,
        use_frequency_in_tournament=True,
        alpha=0.1,
        annealing=True,
        early_stop_condition=None,
        ncyclesperiteration=550,
        fraction_replaced=0.000364,
        fraction_replaced_hof=0.035,
        weight_add_node=0.79,
        weight_insert_node=5.1,
        weight_delete_node=1.7,
        weight_do_nothing=0.21,
        weight_mutate_constant=0.048,
        weight_mutate_operator=0.47,
        weight_randomize=0.00023,
        weight_simplify=0.0020,
        crossover_probability=0.066,
        skip_mutation_failures=True,
        migration=True,
        hof_migration=True,
        topn=12,
        should_optimize_constants=True,
        optimizer_algorithm="BFGS",
        optimizer_nrestarts=2,
        optimize_probability=0.14,
        optimizer_iterations=8,
        perturbation_factor=0.076,
        tournament_selection_n=10,
        tournament_selection_p=0.86,
        procs=cpu_count(),
        multithreading=None,
        cluster_manager=None,
        batching=False,
        batch_size=50,
        fast_cycle=False,
        precision=32,
        random_state=None,
        deterministic=False,
        warm_start=False,
        verbosity=1e9,
        update_verbosity=None,
        progress=True,
        equation_file=None,
        temp_equation_file=False,
        tempdir=None,
        delete_tempfiles=True,
        julia_project=None,
        update=True,
        output_jax_format=False,
        output_torch_format=False,
        extra_sympy_mappings=None,
        extra_torch_mappings=None,
        extra_jax_mappings=None,
        denoise=False,
        select_k_features=None,
        **kwargs,
    ):

        # Hyperparameters
        # - Model search parameters
        self.model_selection = model_selection
        self.binary_operators = binary_operators
        self.unary_operators = unary_operators
        self.niterations = niterations
        self.populations = populations
        # - Model search Constraints
        self.population_size = population_size
        self.max_evals = max_evals
        self.maxsize = maxsize
        self.maxdepth = maxdepth
        self.warmup_maxsize_by = warmup_maxsize_by
        self.timeout_in_seconds = timeout_in_seconds
        self.constraints = constraints
        self.nested_constraints = nested_constraints
        # - Loss parameters
        self.loss = loss
        self.complexity_of_operators = complexity_of_operators
        self.complexity_of_constants = complexity_of_constants
        self.complexity_of_variables = complexity_of_variables
        self.parsimony = float(parsimony)
        self.use_frequency = use_frequency
        self.use_frequency_in_tournament = use_frequency_in_tournament
        self.alpha = alpha
        self.annealing = annealing
        self.early_stop_condition = early_stop_condition
        # - Evolutionary search parameters
        # -- Mutation parameters
        self.ncyclesperiteration = ncyclesperiteration
        self.fraction_replaced = fraction_replaced
        self.fraction_replaced_hof = fraction_replaced_hof
        self.weight_add_node = weight_add_node
        self.weight_insert_node = weight_insert_node
        self.weight_delete_node = weight_delete_node
        self.weight_do_nothing = weight_do_nothing
        self.weight_mutate_constant = weight_mutate_constant
        self.weight_mutate_operator = weight_mutate_operator
        self.weight_randomize = weight_randomize
        self.weight_simplify = weight_simplify
        self.crossover_probability = crossover_probability
        self.skip_mutation_failures = skip_mutation_failures
        # -- Migration parameters
        self.migration = migration
        self.hof_migration = hof_migration
        self.topn = topn
        # -- Constants parameters
        self.should_optimize_constants = should_optimize_constants
        self.optimizer_algorithm = optimizer_algorithm
        self.optimizer_nrestarts = optimizer_nrestarts
        self.optimize_probability = optimize_probability
        self.optimizer_iterations = optimizer_iterations
        self.perturbation_factor = perturbation_factor
        # -- Selection parameters
        self.tournament_selection_n = tournament_selection_n
        self.tournament_selection_p = tournament_selection_p
        # Solver parameters
        self.procs = procs
        self.multithreading = multithreading
        self.cluster_manager = cluster_manager
        self.batching = batching
        self.batch_size = batch_size
        self.fast_cycle = fast_cycle
        self.precision = precision
        self.random_state = random_state
        self.deterministic = deterministic
        self.warm_start = warm_start
        # Additional runtime parameters
        # - Runtime user interface
        self.verbosity = verbosity
        self.update_verbosity = update_verbosity
        self.progress = progress
        # - Project management
        self.equation_file = equation_file
        self.temp_equation_file = temp_equation_file
        self.tempdir = tempdir
        self.delete_tempfiles = delete_tempfiles
        self.julia_project = julia_project
        self.update = update
        self.output_jax_format = output_jax_format
        self.output_torch_format = output_torch_format
        self.extra_sympy_mappings = extra_sympy_mappings
        self.extra_jax_mappings = extra_jax_mappings
        self.extra_torch_mappings = extra_torch_mappings
        # Pre-modelling transformation
        self.denoise = denoise
        self.select_k_features = select_k_features

        # Once all valid parameters have been assigned handle the
        # deprecated kwargs
        if len(kwargs) > 0:  # pragma: no cover
            deprecated_kwargs = make_deprecated_kwargs_for_pysr_regressor()
            for k, v in kwargs.items():
                # Handle renamed kwargs
                if k in deprecated_kwargs:
                    updated_kwarg_name = deprecated_kwargs[k]
                    setattr(self, updated_kwarg_name, v)
                    warnings.warn(
                        f"{k} has been renamed to {updated_kwarg_name} in PySRRegressor. "
                        " Please use that instead.",
                        FutureWarning,
                    )
                # Handle kwargs that have been moved to the fit method
                elif k in ["weights", "variable_names", "Xresampled"]:
                    warnings.warn(
                        f"{k} is a data dependant parameter so should be passed when fit is called. "
                        f"Ignoring parameter; please pass {k} during the call to fit instead.",
                        FutureWarning,
                    )
                else:
                    raise TypeError(
                        f"{k} is not a valid keyword argument for PySRRegressor"
                    )

    def __repr__(self):
        """
        Prints all current equations fitted by the model.

        The string `>>>>` denotes which equation is selected by the
        `model_selection`.
        """
        if not hasattr(self, "equations_") or self.equations_ is None:
            return "PySRRegressor.equations_ = None"

        output = "PySRRegressor.equations_ = [\n"

        equations = self.equations_
        if not isinstance(equations, list):
            all_equations = [equations]
        else:
            all_equations = equations

        for i, equations in enumerate(all_equations):
            selected = ["" for _ in range(len(equations))]
            if self.model_selection == "accuracy":
                chosen_row = -1
            elif self.model_selection == "best":
                chosen_row = equations["score"].idxmax()
            else:
                raise NotImplementedError
            selected[chosen_row] = ">>>>"
            repr_equations = pd.DataFrame(
                dict(
                    pick=selected,
                    score=equations["score"],
                    equation=equations["equation"],
                    loss=equations["loss"],
                    complexity=equations["complexity"],
                )
            )

            if len(all_equations) > 1:
                output += "[\n"

            for line in repr_equations.__repr__().split("\n"):
                output += "\t" + line + "\n"

            if len(all_equations) > 1:
                output += "]"

            if i < len(all_equations) - 1:
                output += ", "

        output += "]"
        return output

    def __getstate__(self):
        """
        Handles pickle serialization for PySRRegressor.

        The Scikit-learn standard requires estimators to be serializable via
        `pickle.dumps()`. However, `PyCall.jlwrap` does not support pickle
        serialization.

        Thus, for `PySRRegressor` to support pickle serialization, the
        `raw_julia_state_` attribute must be hidden from pickle. This will
        prevent the `warm_start` of any model that is loaded via `pickle.loads()`,
        but does allow all other attributes of a fitted `PySRRegressor` estimator
        to be serialized. Note: Jax and Torch format equations are also removed
        from the pickled instance.
        """
        warnings.warn(
            "raw_julia_state_ cannot be pickled and will be removed from the "
            "serialized instance. This will prevent a `warm_start` fit of any "
            "model that is deserialized via `pickle.loads()`."
        )
        state = self.__dict__
        pickled_state = {
            key: None if key == "raw_julia_state_" else value
            for key, value in state.items()
        }
        if "equations_" in pickled_state:
            pickled_state["output_torch_format"] = False
            pickled_state["output_jax_format"] = False
            pickled_columns = ~pickled_state["equations_"].columns.isin(
                ["jax_format", "torch_format"]
            )
            pickled_state["equations_"] = (
                pickled_state["equations_"].loc[:, pickled_columns].copy()
            )
        return pickled_state

    @property
    def equations(self):  # pragma: no cover
        warnings.warn(
            "PySRRegressor.equations is now deprecated. "
            "Please use PySRRegressor.equations_ instead.",
            FutureWarning,
        )
        return self.equations_

    def get_best(self, index=None):
        """
        Get best equation using `model_selection`.

        Parameters
        ----------
        index : int, default=None
            If you wish to select a particular equation from `self.equations_`,
            give the row number here. This overrides the :param`model_selection`
            parameter.

        Returns
        -------
        best_equation : pandas.Series
            Dictionary representing the best expression found.

        Raises
        ------
        NotImplementedError
            Raised when an invalid model selection strategy is provided.
        """
        check_is_fitted(self, attributes=["equations_"])
        if self.equations_ is None:
            raise ValueError("No equations have been generated yet.")

        if index is not None:
            if isinstance(self.equations_, list):
                assert isinstance(index, list)
                return [eq.iloc[i] for eq, i in zip(self.equations_, index)]
            return self.equations_.iloc[index]

        if self.model_selection == "accuracy":
            if isinstance(self.equations_, list):
                return [eq.iloc[-1] for eq in self.equations_]
            return self.equations_.iloc[-1]
        elif self.model_selection == "best":
            if isinstance(self.equations_, list):
                return [eq.iloc[eq["score"].idxmax()] for eq in self.equations_]
            return self.equations_.iloc[self.equations_["score"].idxmax()]
        else:
            raise NotImplementedError(
                f"{self.model_selection} is not a valid model selection strategy."
            )

    def _setup_equation_file(self):
        """
        Sets the full pathname of the equation file, using :param`tempdir` and
        :param`equation_file`.
        """
        # Cast tempdir string as a Path object
        self.tempdir_ = Path(tempfile.mkdtemp(dir=self.tempdir))
        if self.temp_equation_file:
            self.equation_file_ = self.tempdir_ / "hall_of_fame.csv"
        elif self.equation_file is None:
            if self.warm_start and self.equation_file_:
                pass
            else:
                date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
                self.equation_file_ = "hall_of_fame_" + date_time + ".csv"
        else:
            self.equation_file_ = self.equation_file

    def _validate_init_params(self):

        # Immutable parameter validation
        # Ensure instance parameters are allowable values:
        if self.tournament_selection_n > self.population_size:
            raise ValueError(
                "tournament_selection_n parameter must be smaller than population_size."
            )

        if self.maxsize > 40:
            warnings.warn(
                "Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `use_frequency` to False, and perhaps use `warmup_maxsize_by`."
            )
        elif self.maxsize < 7:
            raise ValueError("PySR requires a maxsize of at least 7")

        # NotImplementedError - Values that could be supported at a later time
        if self.optimizer_algorithm not in VALID_OPTIMIZER_ALGORITHMS:
            raise NotImplementedError(
                f"PySR currently only supports the following optimizer algorithms: {VALID_OPTIMIZER_ALGORITHMS}"
            )

        # 'Mutable' parameter validation
        buffer_available = "buffer" in sys.stdout.__dir__()
        modifiable_params = {
            "binary_operators": "+ * - /".split(" "),
            "unary_operators": [],
            "maxdepth": self.maxsize,
            "constraints": {},
            "multithreading": self.procs != 0 and self.cluster_manager is None,
            "batch_size": 1,
            "update_verbosity": self.verbosity,
            "progress": buffer_available,
        }
        packed_modified_params = {}
        for parameter, default_value in modifiable_params.items():
            parameter_value = getattr(self, parameter)
            if parameter_value is None:
                parameter_value = default_value
            else:
                # Special cases such as when binary_operators is a string
                if parameter in ["binary_operators", "unary_operators"] and isinstance(
                    parameter_value, str
                ):
                    parameter_value = [parameter_value]
                elif parameter == "batch_size" and parameter_value < 1:
                    warnings.warn(
                        "Given :param`batch_size` must be greater than or equal to one. "
                        ":param`batch_size` has been increased to equal one."
                    )
                    parameter_value = 1
                elif parameter == "progress" and not buffer_available:
                    warnings.warn(
                        "Note: it looks like you are running in Jupyter. The progress bar will be turned off."
                    )
                    parameter_value = False
            packed_modified_params[parameter] = parameter_value

        assert (
            len(packed_modified_params["binary_operators"])
            + len(packed_modified_params["unary_operators"])
            > 0
        )
        return packed_modified_params

    def _validate_fit_params(self, X, y, Xresampled, weights, variable_names):
        """
        Validates the parameters passed to the :term`fit` method.

        This method also sets the `nout_` attribute.

        Parameters
        ----------
        X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
            Training data.

        y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        Xresampled : {ndarray | pandas.DataFrame} of shape
                        (n_resampled, n_features), default=None
            Resampled training data used for denoising.

        weights : {ndarray | pandas.DataFrame} of the same shape as y
            Each element is how to weight the mean-square-error loss
            for that particular element of y.

        variable_names : list[str] of length n_features
            Names of each variable in the training dataset, `X`.

        Returns
        -------
        X_validated : ndarray of shape (n_samples, n_features)
            Validated training data.

        y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Validated target data.

        Xresampled : ndarray of shape (n_resampled, n_features)
            Validated resampled training data used for denoising.

        variable_names_validated : list[str] of length n_features
            Validated list of variable names for each feature in `X`.

        """

        if isinstance(X, pd.DataFrame):
            if variable_names:
                variable_names = None
                warnings.warn(
                    ":param`variable_names` has been reset to `None` as `X` is a DataFrame. "
                    "Will use DataFrame column names instead."
                )

            if X.columns.is_object() and X.columns.str.contains(" ").any():
                X.columns = X.columns.str.replace(" ", "_")
                warnings.warn(
                    "Spaces in DataFrame column names are not supported. "
                    "Spaces have been replaced with underscores. \n"
                    "Please rename the columns to valid names."
                )
        elif variable_names and [" " in name for name in variable_names].any():
            variable_names = [name.replace(" ", "_") for name in variable_names]
            warnings.warn(
                "Spaces in `variable_names` are not supported. "
                "Spaces have been replaced with underscores. \n"
                "Please use valid names instead."
            )

        # Data validation and feature name fetching via sklearn
        # This method sets the n_features_in_ attribute
        if Xresampled is not None:
            Xresampled = check_array(Xresampled)
        if weights is not None:
            weights = check_array(weights)
            check_consistent_length(weights, y)
        X, y = self._validate_data(X=X, y=y, reset=True, multi_output=True)
        self.feature_names_in_ = _check_feature_names_in(self, variable_names)
        variable_names = self.feature_names_in_

        # Handle multioutput data
        if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
            y = y.reshape(-1)
        elif len(y.shape) == 2:
            self.nout_ = y.shape[1]
        else:
            raise NotImplementedError("y shape not supported!")

        return X, y, Xresampled, weights, variable_names

    def _pre_transform_training_data(
        self, X, y, Xresampled, variable_names, random_state
    ):
        """
        Transforms the training data before fitting the symbolic regressor.

        This method also updates/sets the `selection_mask_` attribute.

        Parameters
        ----------
        X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
            Training data.

        y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        Xresampled : {ndarray | pandas.DataFrame} of shape
                        (n_resampled, n_features), default=None
            Resampled training data used for denoising.

        variable_names : list[str] of length n_features
            Names of each variable in the training dataset, `X`.

        random_state : int, Numpy RandomState instance or None, default=None
            Pass an int for reproducible results across multiple function calls.
            See :term:`Glossary <random_state>`.

        Returns
        -------
        X_transformed : ndarray of shape (n_samples, n_features)
            Transformed training data. n_samples will be equal to
            :param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
            and :param`Xresampled is not None`, otherwise it will be
            equal to :param`X.shape[0]`. n_features will be equal to
            :param`self.select_k_features` if `self.select_k_features is not None`,
            otherwise it will be equal to :param`X.shape[1]`

        y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            Transformed target data. n_samples will be equal to
            :param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
            and :param`Xresampled is not None`, otherwise it will be
            equal to :param`X.shape[0]`.

        variable_names_transformed : list[str] of length n_features
            Names of each variable in the transformed dataset,
            `X_transformed`.
        """
        # Feature selection transformation
        if self.select_k_features:
            self.selection_mask_ = run_feature_selection(
                X, y, self.select_k_features, random_state=random_state
            )
            X = X[:, self.selection_mask_]

            if Xresampled is not None:
                Xresampled = Xresampled[:, self.selection_mask_]

            # Reduce variable_names to selection
            variable_names = [variable_names[i] for i in self.selection_mask_]

            # Re-perform data validation and feature name updating
            X, y = self._validate_data(X=X, y=y, reset=True, multi_output=True)
            # Update feature names with selected variable names
            self.feature_names_in_ = _check_feature_names_in(self, variable_names)
            print(f"Using features {self.feature_names_in_}")

        # Denoising transformation
        if self.denoise:
            if self.nout_ > 1:
                y = np.stack(
                    [
                        _denoise(
                            X, y[:, i], Xresampled=Xresampled, random_state=random_state
                        )[1]
                        for i in range(self.nout_)
                    ],
                    axis=1,
                )
                if Xresampled is not None:
                    X = Xresampled
            else:
                X, y = _denoise(X, y, Xresampled=Xresampled, random_state=random_state)

        return X, y, variable_names

    def _run(self, X, y, mutated_params, weights, seed):
        """
        Run the symbolic regression fitting process on the julia backend.

        Parameters
        ----------
        X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
            Training data.

        y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        mutated_params : dict[str, Any]
            Dictionary of mutated versions of some parameters passed in __init__.

        weights : {ndarray | pandas.DataFrame} of the same shape as y
            Each element is how to weight the mean-square-error loss
            for that particular element of y.

        seed : int
            Random seed for julia backend process.

        Returns
        -------
        self : object
            Reference to `self` with fitted attributes.

        Raises
        ------
        ImportError
            Raised when the julia backend fails to import a package.
        """
        # Need to be global as we don't want to recreate/reinstate julia for
        # every new instance of PySRRegressor
        global already_ran
        global Main

        # These are the parameters which may be modified from the ones
        # specified in init, so we define them here locally:
        binary_operators = mutated_params["binary_operators"]
        unary_operators = mutated_params["unary_operators"]
        maxdepth = mutated_params["maxdepth"]
        constraints = mutated_params["constraints"]
        nested_constraints = self.nested_constraints
        complexity_of_operators = self.complexity_of_operators
        multithreading = mutated_params["multithreading"]
        cluster_manager = self.cluster_manager
        batch_size = mutated_params["batch_size"]
        update_verbosity = mutated_params["update_verbosity"]
        progress = mutated_params["progress"]

        # Start julia backend processes
        if Main is None:
            if multithreading:
                os.environ["JULIA_NUM_THREADS"] = str(self.procs)

            Main = init_julia()

        if cluster_manager is not None:
            Main.eval(f"import ClusterManagers: addprocs_{cluster_manager}")
            cluster_manager = Main.eval(f"addprocs_{cluster_manager}")

        if not already_ran:
            julia_project, is_shared = _get_julia_project(self.julia_project)
            Main.eval("using Pkg")
            io = "devnull" if update_verbosity == 0 else "stderr"
            io_arg = f"io={io}" if is_julia_version_greater_eq(Main, "1.6") else ""

            Main.eval(
                f'Pkg.activate("{_escape_filename(julia_project)}", shared = Bool({int(is_shared)}), {io_arg})'
            )
            from julia.api import JuliaError

            if is_shared:
                # Install SymbolicRegression.jl:
                _add_sr_to_julia_project(Main, io_arg)

            try:
                if self.update:
                    Main.eval(f"Pkg.resolve({io_arg})")
                    Main.eval(f"Pkg.instantiate({io_arg})")
                else:
                    Main.eval(f"Pkg.instantiate({io_arg})")
            except (JuliaError, RuntimeError) as e:
                raise ImportError(import_error_string(julia_project)) from e
            Main.eval("using SymbolicRegression")

            Main.plus = Main.eval("(+)")
            Main.sub = Main.eval("(-)")
            Main.mult = Main.eval("(*)")
            Main.pow = Main.eval("(^)")
            Main.div = Main.eval("(/)")

        # TODO(mcranmer): These functions should be part of this class.
        binary_operators, unary_operators = _maybe_create_inline_operators(
            binary_operators=binary_operators, unary_operators=unary_operators
        )
        constraints = _process_constraints(
            binary_operators=binary_operators,
            unary_operators=unary_operators,
            constraints=constraints,
        )

        una_constraints = [constraints[op] for op in unary_operators]
        bin_constraints = [constraints[op] for op in binary_operators]

        # Parse dict into Julia Dict for nested constraints::
        if nested_constraints is not None:
            nested_constraints_str = "Dict("
            for outer_k, outer_v in nested_constraints.items():
                nested_constraints_str += f"({outer_k}) => Dict("
                for inner_k, inner_v in outer_v.items():
                    nested_constraints_str += f"({inner_k}) => {inner_v}, "
                nested_constraints_str += "), "
            nested_constraints_str += ")"
            nested_constraints = Main.eval(nested_constraints_str)

        # Parse dict into Julia Dict for complexities:
        if complexity_of_operators is not None:
            complexity_of_operators_str = "Dict("
            for k, v in complexity_of_operators.items():
                complexity_of_operators_str += f"({k}) => {v}, "
            complexity_of_operators_str += ")"
            complexity_of_operators = Main.eval(complexity_of_operators_str)

        Main.custom_loss = Main.eval(self.loss)

        mutationWeights = [
            float(self.weight_mutate_constant),
            float(self.weight_mutate_operator),
            float(self.weight_add_node),
            float(self.weight_insert_node),
            float(self.weight_delete_node),
            float(self.weight_simplify),
            float(self.weight_randomize),
            float(self.weight_do_nothing),
        ]

        # Call to Julia backend.
        # See https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/OptionsStruct.jl
        options = Main.Options(
            binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
            unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
            bin_constraints=bin_constraints,
            una_constraints=una_constraints,
            complexity_of_operators=complexity_of_operators,
            complexity_of_constants=self.complexity_of_constants,
            complexity_of_variables=self.complexity_of_variables,
            nested_constraints=nested_constraints,
            loss=Main.custom_loss,
            maxsize=int(self.maxsize),
            hofFile=_escape_filename(self.equation_file_),
            npopulations=int(self.populations),
            batching=self.batching,
            batchSize=int(min([batch_size, len(X)]) if self.batching else len(X)),
            mutationWeights=mutationWeights,
            probPickFirst=self.tournament_selection_p,
            ns=self.tournament_selection_n,
            # These have the same name:
            parsimony=self.parsimony,
            alpha=self.alpha,
            maxdepth=maxdepth,
            fast_cycle=self.fast_cycle,
            migration=self.migration,
            hofMigration=self.hof_migration,
            fractionReplacedHof=self.fraction_replaced_hof,
            shouldOptimizeConstants=self.should_optimize_constants,
            warmupMaxsizeBy=self.warmup_maxsize_by,
            useFrequency=self.use_frequency,
            useFrequencyInTournament=self.use_frequency_in_tournament,
            npop=self.population_size,
            ncyclesperiteration=self.ncyclesperiteration,
            fractionReplaced=self.fraction_replaced,
            topn=self.topn,
            verbosity=self.verbosity,
            optimizer_algorithm=self.optimizer_algorithm,
            optimizer_nrestarts=self.optimizer_nrestarts,
            optimize_probability=self.optimize_probability,
            optimizer_iterations=self.optimizer_iterations,
            perturbationFactor=self.perturbation_factor,
            annealing=self.annealing,
            stateReturn=True,  # Required for state saving.
            progress=progress,
            timeout_in_seconds=self.timeout_in_seconds,
            crossoverProbability=self.crossover_probability,
            skip_mutation_failures=self.skip_mutation_failures,
            max_evals=self.max_evals,
            earlyStopCondition=self.early_stop_condition,
            seed=seed,
            deterministic=self.deterministic,
        )

        # Convert data to desired precision
        np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self.precision]

        # This converts the data into a Julia array:
        Main.X = np.array(X, dtype=np_dtype).T
        if len(y.shape) == 1:
            Main.y = np.array(y, dtype=np_dtype)
        else:
            Main.y = np.array(y, dtype=np_dtype).T
        if weights is not None:
            if len(weights.shape) == 1:
                Main.weights = np.array(weights, dtype=np_dtype)
            else:
                Main.weights = np.array(weights, dtype=np_dtype).T
        else:
            Main.weights = None

        cprocs = 0 if multithreading else self.procs

        # Call to Julia backend.
        # See https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/SymbolicRegression.jl
        self.raw_julia_state_ = Main.EquationSearch(
            Main.X,
            Main.y,
            weights=Main.weights,
            niterations=int(self.niterations),
            varMap=self.feature_names_in_.tolist(),
            options=options,
            numprocs=int(cprocs),
            multithreading=bool(multithreading),
            saved_state=self.raw_julia_state_,
            addprocs_function=cluster_manager,
        )

        # Set attributes
        self.equations_ = self.get_hof()

        if self.delete_tempfiles:
            shutil.rmtree(self.tempdir_)

        already_ran = True

        return self

    def fit(
        self,
        X,
        y,
        Xresampled=None,
        weights=None,
        variable_names=None,
    ):
        """
        Search for equations to fit the dataset and store them in `self.equations_`.

        Parameters
        ----------
        X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
            Training data.

        y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        Xresampled : {ndarray | pandas.DataFrame} of shape
                        (n_resampled, n_features), default=None
            Resampled training data used for denoising.

        weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
            Each element is how to weight the mean-square-error loss
            for that particular element of y.

        variable_names : list[str], default=None
            A list of names for the variables, rather than "x0", "x1", etc.
            If :param`X` is a pandas dataframe, the column names will be used.
            If variable_names are specified

        Returns
        -------
        self : object
            Fitted Estimator.
        """
        # Init attributes that are not specified in BaseEstimator
        if self.warm_start and hasattr(self, "raw_julia_state_"):
            pass
        else:
            self.equations_ = None
            self.nout_ = 1
            self.selection_mask_ = None
            self.raw_julia_state_ = None

        random_state = check_random_state(self.random_state)  # For np random
        seed = random_state.get_state()[1][0]  # For julia random

        self._setup_equation_file()

        mutated_params = self._validate_init_params()

        X, y, Xresampled, weights, variable_names = self._validate_fit_params(
            X, y, Xresampled, weights, variable_names
        )

        if X.shape[0] > 10000 and not self.batching:
            warnings.warn(
                "Note: you are running with more than 10,000 datapoints. "
                "You should consider turning on batching (https://astroautomata.com/PySR/#/options?id=batching). "
                "You should also reconsider if you need that many datapoints. "
                "Unless you have a large amount of noise (in which case you "
                "should smooth your dataset first), generally < 10,000 datapoints "
                "is enough to find a functional form with symbolic regression. "
                "More datapoints will lower the search speed."
            )

        # Pre transformations (feature selection and denoising)
        X, y, variable_names = self._pre_transform_training_data(
            X, y, Xresampled, variable_names, random_state
        )

        # Warn about large feature counts (still warn if feature count is large
        # after running feature selection)
        if self.n_features_in_ >= 10:
            warnings.warn(
                "Note: you are running with 10 features or more. "
                "Genetic algorithms like used in PySR scale poorly with large numbers of features. "
                "Consider using feature selection techniques to select the most important features "
                "(you can do this automatically with the `select_k_features` parameter), "
                "or, alternatively, doing a dimensionality reduction beforehand. "
                "For example, `X = PCA(n_components=6).fit_transform(X)`, "
                "using scikit-learn's `PCA` class, "
                "will reduce the number of features to 6 in an interpretable way, "
                "as each resultant feature "
                "will be a linear combination of the original features. "
            )

        # Assertion checks
        use_custom_variable_names = variable_names is not None
        # TODO: this is always true.

        _check_assertions(
            X,
            use_custom_variable_names,
            variable_names,
            weights,
            y,
        )

        # Fitting procedure
        return self._run(X, y, mutated_params, weights=weights, seed=seed)

    def refresh(self, checkpoint_file=None):
        """
        Updates self.equations_ with any new options passed, such as
        :param`extra_sympy_mappings`.

        Parameters
        ----------
        checkpoint_file : str, default=None
            Path to checkpoint hall of fame file to be loaded.
        """
        check_is_fitted(self, attributes=["equation_file_"])
        if checkpoint_file:
            self.equation_file_ = checkpoint_file
        self.equations_ = self.get_hof()

    def predict(self, X, index=None):
        """
        Predict y from input X using the equation chosen by `model_selection`.

        You may see what equation is used by printing this object. X should
        have the same columns as the training data.

        Parameters
        ----------
        X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
            Training data.

        index : int, default=None
            If you want to compute the output of an expression using a
            particular row of `self.equations_`, you may specify the index here.

        Returns
        -------
        y_predicted : ndarray of shape (n_samples, nout_)
            Values predicted by substituting `X` into the fitted symbolic
            regression model.

        Raises
        ------
        ValueError
            Raises if the `best_equation` cannot be evaluated.
        """
        check_is_fitted(
            self, attributes=["selection_mask_", "feature_names_in_", "nout_"]
        )
        best_equation = self.get_best(index=index)

        # When X is an numpy array or a pandas dataframe with a RangeIndex,
        # the self.feature_names_in_ generated during fit, for the same X,
        # will cause a warning to be thrown during _validate_data.
        # To avoid this, convert X to a dataframe, apply the selection mask,
        # and then set the column/feature_names of X to be equal to those
        # generated during fit.
        if not isinstance(X, pd.DataFrame):
            X = check_array(X)
            X = pd.DataFrame(X)
        if isinstance(X.columns, pd.RangeIndex):
            if self.selection_mask_ is not None:
                # RangeIndex enforces column order allowing columns to
                # be correctly filtered with self.selection_mask_
                X = X.iloc[:, self.selection_mask_]
            X.columns = self.feature_names_in_
        # Without feature information, CallableEquation/lambda_format equations
        # require that the column order of X matches that of the X used during
        # the fitting process. _validate_data removes this feature information
        # when it converts the dataframe to an np array. Thus, to ensure feature
        # order is preserved after conversion, the dataframe columns must be
        # reordered/reindexed to match those of the transformed (denoised and
        # feature selected) X in fit.
        X = X.reindex(columns=self.feature_names_in_)
        X = self._validate_data(X, reset=False)

        try:
            if self.nout_ > 1:
                return np.stack(
                    [eq["lambda_format"](X) for eq in best_equation], axis=1
                )
            return best_equation["lambda_format"](X)
        except Exception as error:
            raise ValueError(
                "Failed to evaluate the expression. "
                "If you are using a custom operator, make sure to define it in :param`extra_sympy_mappings`, "
                "e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1 / x})`."
            ) from error

    def sympy(self, index=None):
        """
        Return sympy representation of the equation(s) chosen by `model_selection`.

        Parameters
        ----------
        index : int, default=None
            If you wish to select a particular equation from
            `self.equations_`, give the index number here. This overrides
            the `model_selection` parameter.

        Returns
        -------
        best_equation : str, list[str] of length nout_
            SymPy representation of the best equation.
        """
        self.refresh()
        best_equation = self.get_best(index=index)
        if self.nout_ > 1:
            return [eq["sympy_format"] for eq in best_equation]
        return best_equation["sympy_format"]

    def latex(self, index=None):
        """
        Return latex representation of the equation(s) chosen by `model_selection`.

        Parameters
        ----------
        index : int, default=None
            If you wish to select a particular equation from
            `self.equations_`, give the index number here. This overrides
            the `model_selection` parameter.

        Returns
        -------
        best_equation : str or list[str] of length nout_
            LaTeX expression of the best equation.
        """
        self.refresh()
        sympy_representation = self.sympy(index=index)
        if self.nout_ > 1:
            return [sympy.latex(s) for s in sympy_representation]
        return sympy.latex(sympy_representation)

    def jax(self, index=None):
        """
        Return jax representation of the equation(s) chosen by `model_selection`.

        Each equation (multiple given if there are multiple outputs) is a dictionary
        containing {"callable": func, "parameters": params}. To call `func`, pass
        func(X, params). This function is differentiable using `jax.grad`.

        Parameters
        ----------
        index : int, default=None
            If you wish to select a particular equation from
            `self.equations_`, give the row number here. This overrides
            the `model_selection` parameter.

        Returns
        -------
        best_equation : dict[str, Any]
            Dictionary of callable jax function in "callable" key,
            and jax array of parameters as "parameters" key.
        """
        self.set_params(output_jax_format=True)
        self.refresh()
        best_equation = self.get_best(index=index)
        if self.nout_ > 1:
            return [eq["jax_format"] for eq in best_equation]
        return best_equation["jax_format"]

    def pytorch(self, index=None):
        """
        Return pytorch representation of the equation(s) chosen by `model_selection`.

        Each equation (multiple given if there are multiple outputs) is a PyTorch module
        containing the parameters as trainable attributes. You can use the module like
        any other PyTorch module: `module(X)`, where `X` is a tensor with the same
        column ordering as trained with.

        Parameters
        ----------
        index : int, default=None
            If you wish to select a particular equation from
            `self.equations_`, give the row number here. This overrides
            the `model_selection` parameter.

        Returns
        -------
        best_equation : torch.nn.Module
            PyTorch module representing the expression.
        """
        self.set_params(output_torch_format=True)
        self.refresh()
        best_equation = self.get_best(index=index)
        if self.nout_ > 1:
            return [eq["torch_format"] for eq in best_equation]
        return best_equation["torch_format"]

    def get_hof(self):
        """Get the equations from a hall of fame file. If no arguments
        entered, the ones used previously from a call to PySR will be used."""
        check_is_fitted(
            self,
            attributes=[
                "nout_",
                "equation_file_",
                "selection_mask_",
                "feature_names_in_",
            ],
        )
        try:
            if self.nout_ > 1:
                all_outputs = []
                for i in range(1, self.nout_ + 1):
                    df = pd.read_csv(
                        str(self.equation_file_) + f".out{i}" + ".bkup",
                        sep="|",
                    )
                    # Rename Complexity column to complexity:
                    df.rename(
                        columns={
                            "Complexity": "complexity",
                            "MSE": "loss",
                            "Equation": "equation",
                        },
                        inplace=True,
                    )

                    all_outputs.append(df)
            else:
                all_outputs = [pd.read_csv(str(self.equation_file_) + ".bkup", sep="|")]
                all_outputs[-1].rename(
                    columns={
                        "Complexity": "complexity",
                        "MSE": "loss",
                        "Equation": "equation",
                    },
                    inplace=True,
                )
        except FileNotFoundError:
            raise RuntimeError(
                "Couldn't find equation file! The equation search likely exited before a single iteration completed."
            )

        # It is expected extra_jax/torch_mappings will be updated after fit.
        # Thus, validation is performed here instead of in _validate_init_params
        extra_jax_mappings = self.extra_jax_mappings
        extra_torch_mappings = self.extra_torch_mappings
        if extra_jax_mappings is not None:
            for value in extra_jax_mappings.values():
                if not isinstance(value, str):
                    raise ValueError(
                        "extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
                    )
        else:
            extra_jax_mappings = {}
        if extra_torch_mappings is not None:
            for value in extra_jax_mappings.values():
                if not callable(value):
                    raise ValueError(
                        "extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
                    )
        else:
            extra_torch_mappings = {}

        ret_outputs = []

        for output in all_outputs:

            scores = []
            lastMSE = None
            lastComplexity = 0
            sympy_format = []
            lambda_format = []
            if self.output_jax_format:
                jax_format = []
            if self.output_torch_format:
                torch_format = []
            local_sympy_mappings = {
                **(self.extra_sympy_mappings if self.extra_sympy_mappings else {}),
                **sympy_mappings,
            }

            sympy_symbols = [
                sympy.Symbol(variable) for variable in self.feature_names_in_
            ]

            for _, eqn_row in output.iterrows():
                eqn = sympify(eqn_row["equation"], locals=local_sympy_mappings)
                sympy_format.append(eqn)

                # Numpy:
                lambda_format.append(
                    CallableEquation(
                        sympy_symbols, eqn, self.selection_mask_, self.feature_names_in_
                    )
                )

                # JAX:
                if self.output_jax_format:
                    from .export_jax import sympy2jax

                    func, params = sympy2jax(
                        eqn,
                        sympy_symbols,
                        selection=self.selection_mask_,
                        extra_jax_mappings=(
                            self.extra_jax_mappings if self.extra_jax_mappings else {}
                        ),
                    )
                    jax_format.append({"callable": func, "parameters": params})

                # Torch:
                if self.output_torch_format:
                    from .export_torch import sympy2torch

                    module = sympy2torch(
                        eqn,
                        sympy_symbols,
                        selection=self.selection_mask_,
                        extra_torch_mappings=(
                            self.extra_torch_mappings
                            if self.extra_torch_mappings
                            else {}
                        ),
                    )
                    torch_format.append(module)

                curMSE = eqn_row["loss"]
                curComplexity = eqn_row["complexity"]

                if lastMSE is None:
                    cur_score = 0.0
                else:
                    if curMSE > 0.0:
                        cur_score = -np.log(curMSE / lastMSE) / (
                            curComplexity - lastComplexity
                        )
                    else:
                        cur_score = np.inf

                scores.append(cur_score)
                lastMSE = curMSE
                lastComplexity = curComplexity

            output["score"] = np.array(scores)
            output["sympy_format"] = sympy_format
            output["lambda_format"] = lambda_format
            output_cols = [
                "complexity",
                "loss",
                "score",
                "equation",
                "sympy_format",
                "lambda_format",
            ]
            if self.output_jax_format:
                output_cols += ["jax_format"]
                output["jax_format"] = jax_format
            if self.output_torch_format:
                output_cols += ["torch_format"]
                output["torch_format"] = torch_format

            ret_outputs.append(output[output_cols])

        if self.nout_ > 1:
            return ret_outputs
        return ret_outputs[0]


def _denoise(X, y, Xresampled=None, random_state=None):
    """Denoise the dataset using a Gaussian process"""
    from sklearn.gaussian_process import GaussianProcessRegressor
    from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel

    gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
    gpr = GaussianProcessRegressor(
        kernel=gp_kernel, n_restarts_optimizer=50, random_state=random_state
    )
    gpr.fit(X, y)
    if Xresampled is not None:
        return Xresampled, gpr.predict(Xresampled)

    return X, gpr.predict(X)


# Function has not been removed only due to usage in module tests
def _handle_feature_selection(X, select_k_features, y, variable_names):
    if select_k_features is not None:
        selection = run_feature_selection(X, y, select_k_features)
        print(f"Using features {[variable_names[i] for i in selection]}")
        X = X[:, selection]

    else:
        selection = None
    return X, selection


def run_feature_selection(X, y, select_k_features, random_state=None):
    """
    Use a gradient boosting tree regressor as a proxy for finding
    the k most important features in X, returning indices for those
    features as output.
    """
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.feature_selection import SelectFromModel

    clf = RandomForestRegressor(
        n_estimators=100, max_depth=3, random_state=random_state
    )
    clf.fit(X, y)
    selector = SelectFromModel(
        clf, threshold=-np.inf, max_features=select_k_features, prefit=True
    )
    return selector.get_support(indices=True)