Spaces:
Running
Running
File size: 48,657 Bytes
a1457c0 2f296b6 976f8d8 2f296b6 2f38c9c 976f8d8 bed9614 976f8d8 e84bed4 7ed402e 2f296b6 0501132 089d82d 0501132 089d82d 618a3f8 bed9614 bbf18ee 7d4300a 2f38c9c 9a7c989 14e9a4b 4b56660 26a3c7f 5ada6c7 aaf3c83 14e9a4b ed35c4e 7d4300a 2f38c9c 4c9fe98 af14165 c7187a6 af14165 10ff16a 44aefe9 502e3ec 00875eb 502e3ec 00875eb 82fef08 00875eb c86910d 6146f6b c86910d 4c9fe98 5784d04 4c9fe98 98ccd5e c86910d d16abb4 c86910d 4c9fe98 af14165 c7187a6 c86910d 6146f6b 7049740 82fef08 7049740 673e8d5 3fcdd9a 673e8d5 3fcdd9a 673e8d5 1d19a08 af8d4da 1f3aace d16abb4 af8d4da 0445487 1f3aace af8d4da 81cfb5c af8d4da 1a177ee af8d4da 7049740 82fef08 7049740 fd42a40 7d4300a af14165 1b17efe fd42a40 af14165 e0e2933 7d4300a 6f3a6fd bfb135a 4c9fe98 7d4300a af14165 c7187a6 2f38c9c c7187a6 af14165 ddb4d52 d9913e3 616ec5c 085fe48 616ec5c 41f0271 085fe48 d85c1a5 ae0b11e ed35c4e 6a4fa2c 5af6354 6a4fa2c af14165 7d4300a 932dcf5 7d4300a d85c1a5 4c9fe98 7d4300a ae0b11e 6a4fa2c b293893 f5577ea b293893 50c7eff b293893 f5577ea b293893 6a4fa2c 90d3ef7 6e07d35 90d3ef7 8fe6c62 90d3ef7 775c667 ed35c4e a232b56 58834e8 a232b56 4c9fe98 a232b56 0020398 58834e8 0020398 7d4300a c7187a6 faa83d3 8cfda07 aa16a1e 03d5a42 87880d1 03d5a42 81cfb5c 0b521f3 7c2bce0 03d5a42 aa16a1e c7187a6 aa16a1e 0fba777 21d6b92 fb5f0a1 ed35c4e af14165 ffd9cd1 932dcf5 27fac96 5750d1a 4c9fe98 5750d1a 27fac96 aaf3c83 fb5f0a1 af14165 fb5f0a1 5750d1a 50f37a0 ffd9cd1 ed35c4e ffd9cd1 0501132 ffd9cd1 ed35c4e ffd9cd1 ad8332d ffd9cd1 ed35c4e ffd9cd1 af14165 ffd9cd1 561e614 ffd9cd1 b13cd4f 4c9fe98 ffd9cd1 c7187a6 af14165 45d2b5f 1662e82 ffd9cd1 ed35c4e ffd9cd1 45d2b5f ffd9cd1 a190947 224f906 a190947 f266b70 a190947 f266b70 a190947 ccf71e9 7c35b4e 593c674 ccf71e9 0501132 ccf71e9 58e25a9 34f4e3f 58e25a9 ccf71e9 78cdb0e 34f4e3f 78cdb0e b53e7fa 0501132 34f4e3f b53e7fa 9f3b918 1adfa85 c6c8728 82b18ca 0dbee97 82b18ca 0dbee97 82b18ca c6c8728 1adfa85 fbb7cf7 7d4300a ec8124e 7d4300a c6c8728 c7187a6 f59f827 1adfa85 f59f827 1adfa85 a55fec0 1adfa85 f59f827 1adfa85 c7187a6 f5577ea 97e6589 175b024 97e6589 51a6b05 ed35c4e 51a6b05 ed35c4e 7d4300a 97e6589 505af8d 97e6589 ed35c4e 7d4300a 5fac847 7d4300a 5af6354 7d4300a 505af8d 7d4300a 97e6589 7d4300a 1662e82 912de01 042b27f b8a97f1 2f528dc 178a8f8 2f528dc 912de01 ad84a1c c7187a6 912de01 c7187a6 ad84a1c 8f60615 6671f5e ad84a1c 27fac96 ad84a1c 673c1d2 045bdb1 bfc129c e29a6da f340c5b e29a6da c5dc7b7 f340c5b c5dc7b7 f340c5b c5dc7b7 e29a6da 92eb30b ea7ced4 6248183 2f296b6 ea7ced4 ddeae6c 2f296b6 6088859 ea7ced4 6088859 af0be92 ea7ced4 ddeae6c af0be92 6088859 af0be92 a1457c0 c6c8728 3752ba6 c6c8728 44b5271 3752ba6 44b5271 c6c8728 fab6f87 c6c8728 fab6f87 c6c8728 44b5271 c6c8728 3ef2b32 c6c8728 3752ba6 c6c8728 44b5271 215a692 c6c8728 3ef2b32 c6c8728 3752ba6 44b5271 c6c8728 44b5271 c6c8728 3ef2b32 c6c8728 3752ba6 c6c8728 44b5271 215a692 c6c8728 3ef2b32 c6c8728 3752ba6 c6c8728 9a5df63 82b18ca 3ef2b32 82b18ca 3ef2b32 178a8f8 82b18ca 3752ba6 82b18ca 9a5df63 b2d7f41 9a5df63 b2d7f41 9a5df63 b2d7f41 9a5df63 b2d7f41 118c5f6 2a802ab 3ef2b32 178a8f8 2a802ab 3752ba6 2a802ab a2fd8f3 2d025c2 0e15dd6 2d025c2 0e86456 2d025c2 4f7e6cf 0e86456 2d025c2 0e15dd6 2d025c2 0e15dd6 c134e5e 2d025c2 04454ac 616ec5c 04454ac 616ec5c 04454ac 7a8dabd 04454ac fbd0ad8 04454ac 7a8dabd 04454ac a117981 db8bfce a117981 22eb380 a117981 db8bfce 22eb380 a117981 22eb380 db8bfce a117981 5dfd8d5 a117981 22eb380 db8bfce 4b48961 db8bfce 22eb380 2d025c2 ef66f4a a2fd8f3 2f528dc a2fd8f3 2d025c2 a2fd8f3 ef66f4a a2fd8f3 ef66f4a a2fd8f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
import importlib
import os
import pickle as pkl
import tempfile
import traceback
import unittest
import warnings
from pathlib import Path
import numpy as np
import pandas as pd
import sympy # type: ignore
from sklearn.utils.estimator_checks import check_estimator
from pysr import PySRRegressor, install, jl
from pysr.export_latex import sympy2latex
from pysr.feature_selection import _handle_feature_selection, run_feature_selection
from pysr.julia_helpers import init_julia
from pysr.sr import (
_check_assertions,
_process_constraints,
_suggest_keywords,
idx_model_selection,
)
from pysr.utils import _csv_filename_to_pkl_filename
from .params import (
DEFAULT_NCYCLES,
DEFAULT_NITERATIONS,
DEFAULT_PARAMS,
DEFAULT_POPULATIONS,
)
# Disables local saving:
os.environ["SYMBOLIC_REGRESSION_IS_TESTING"] = os.environ.get(
"SYMBOLIC_REGRESSION_IS_TESTING", "true"
)
class TestPipeline(unittest.TestCase):
def setUp(self):
# Using inspect,
# get default niterations from PySRRegressor, and double them:
self.default_test_kwargs = dict(
progress=False,
model_selection="accuracy",
niterations=DEFAULT_NITERATIONS * 2,
populations=DEFAULT_POPULATIONS * 2,
temp_equation_file=True,
)
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(100, 5)
def test_linear_relation(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_linear_relation_named(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"])
self.assertIn("c1", model.equations_.iloc[-1]["equation"])
def test_linear_relation_weighted_bumper(self):
y = self.X[:, 0]
weights = np.ones_like(y)
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
bumper=True,
)
model.fit(self.X, y, weights=weights)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
self.assertEqual(
jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.bumper), True
)
def test_multiprocessing_turbo_custom_objective(self):
rstate = np.random.RandomState(0)
y = self.X[:, 0]
y += rstate.randn(*y.shape) * 1e-4
model = PySRRegressor(
**self.default_test_kwargs,
# Turbo needs to work with unsafe operators:
unary_operators=["sqrt"],
procs=2,
multithreading=False,
turbo=True,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-10 && complexity == 1",
loss_function="""
function my_objective(tree::Node{T}, dataset::Dataset{T}, options::Options) where T
prediction, flag = eval_tree_array(tree, dataset.X, options)
!flag && return T(Inf)
abs3(x) = abs(x) ^ 3
return sum(abs3, prediction .- dataset.y) / length(prediction)
end
""",
)
model.fit(self.X, y)
print(model.equations_)
best_loss = model.equations_.iloc[-1]["loss"]
self.assertLessEqual(best_loss, 1e-10)
self.assertGreaterEqual(best_loss, 0.0)
# Test options stored:
self.assertEqual(
jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), True
)
def test_multiline_seval(self):
# The user should be able to run multiple things in a single seval call:
num = jl.seval(
"""
function my_new_objective(x)
x^2
end
1.5
"""
)
self.assertEqual(num, 1.5)
def test_high_precision_search_custom_loss(self):
y = 1.23456789 * self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
elementwise_loss="my_loss(prediction, target) = (prediction - target)^2",
precision=64,
parsimony=0.01,
warm_start=True,
)
model.fit(self.X, y)
# We should have that the model state is now a Float64 hof:
test_state = model.raw_julia_state_
self.assertTrue(jl.typeof(test_state[1]).parameters[1] == jl.Float64)
# Test options stored:
self.assertEqual(
jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), False
)
def test_multioutput_custom_operator_quiet_custom_complexity(self):
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
unary_operators=["square_op(x) = x^2"],
extra_sympy_mappings={"square_op": lambda x: x**2},
complexity_of_operators={"square_op": 2, "plus": 1},
binary_operators=["plus"],
verbosity=0,
**self.default_test_kwargs,
procs=0,
# Test custom operators with turbo:
turbo=True,
# Test custom operators with constraints:
nested_constraints={"square_op": {"square_op": 3}},
constraints={"square_op": 10},
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
)
model.fit(self.X, y)
equations = model.equations_
print(equations)
self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"])
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4)
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4)
test_y1 = model.predict(self.X)
test_y2 = model.predict(self.X, index=[-1, -1])
mse1 = np.average((test_y1 - y) ** 2)
mse2 = np.average((test_y2 - y) ** 2)
self.assertLessEqual(mse1, 1e-4)
self.assertLessEqual(mse2, 1e-4)
def test_custom_variable_complexity(self):
for outer in (True, False):
for case in (1, 2):
y = self.X[:, [0, 1]]
if case == 1:
kwargs = dict(complexity_of_variables=[2, 3])
elif case == 2:
kwargs = dict(complexity_of_variables=2)
if outer:
outer_kwargs = kwargs
inner_kwargs = dict()
else:
outer_kwargs = dict()
inner_kwargs = kwargs
model = PySRRegressor(
binary_operators=["+"],
verbosity=0,
**self.default_test_kwargs,
early_stop_condition=(
f"stop_if_{case}(l, c) = l < 1e-8 && c <= {3 if case == 1 else 2}"
),
**outer_kwargs,
)
model.fit(self.X[:, [0, 1]], y, **inner_kwargs)
self.assertLessEqual(model.get_best()[0]["loss"], 1e-8)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-8)
self.assertEqual(model.get_best()[0]["complexity"], 2)
self.assertEqual(
model.get_best()[1]["complexity"], 3 if case == 1 else 2
)
def test_error_message_custom_variable_complexity(self):
X = np.ones((10, 2))
y = np.ones((10,))
model = PySRRegressor()
with self.assertRaises(ValueError) as cm:
model.fit(X, y, complexity_of_variables=[1, 2, 3])
self.assertIn(
"number of elements in `complexity_of_variables`", str(cm.exception)
)
def test_error_message_both_variable_complexity(self):
X = np.ones((10, 2))
y = np.ones((10,))
model = PySRRegressor(complexity_of_variables=[1, 2])
with self.assertRaises(ValueError) as cm:
model.fit(X, y, complexity_of_variables=[1, 2, 3])
self.assertIn(
"You cannot set `complexity_of_variables` at both `fit` and `__init__`.",
str(cm.exception),
)
def test_multioutput_weighted_with_callable_temp_equation(self):
X = self.X.copy()
y = X[:, [0, 1]] ** 2
w = self.rstate.rand(*y.shape)
w[w < 0.5] = 0.0
w[w >= 0.5] = 1.0
# Double equation when weights are 0:
y = (2 - w) * y
# Thus, pysr needs to use the weights to find the right equation!
model = PySRRegressor(
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
delete_tempfiles=False,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2",
)
model.fit(X.copy(), y, weights=w)
# These tests are flaky, so don't fail test:
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=3
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[0])
print("True equation: x0^2")
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=3
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[1])
print("True equation: x1^2")
def test_complex_equations_anonymous_stop(self):
X = self.rstate.randn(100, 3) + 1j * self.rstate.randn(100, 3)
y = (2 + 1j) * np.cos(X[:, 0] * (0.5 - 0.3j))
model = PySRRegressor(
binary_operators=["+", "-", "*"],
unary_operators=["cos"],
**self.default_test_kwargs,
early_stop_condition="(loss, complexity) -> loss <= 1e-4 && complexity <= 6",
)
model.niterations = DEFAULT_NITERATIONS * 10
model.fit(X, y)
test_y = model.predict(X)
self.assertTrue(np.issubdtype(test_y.dtype, np.complexfloating))
self.assertLessEqual(np.average(np.abs(test_y - y) ** 2), 1e-4)
def test_empty_operators_single_input_warm_start(self):
X = self.rstate.randn(100, 1)
y = X[:, 0] + 3.0
regressor = PySRRegressor(
unary_operators=[],
binary_operators=["plus"],
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
)
self.assertTrue("None" in regressor.__repr__())
regressor.fit(X, y)
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Test if repeated fit works:
regressor.set_params(
niterations=1,
ncycles_per_iteration=2,
warm_start=True,
early_stop_condition=None,
)
# We should have that the model state is now a Float32 hof:
test_state = regressor.julia_state_
self.assertTrue(
jl.first(jl.typeof(jl.last(test_state)).parameters) == jl.Float32
)
# This should exit almost immediately, and use the old equations
regressor.fit(X, y)
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Tweak model selection:
regressor.set_params(model_selection="best")
self.assertEqual(regressor.get_params()["model_selection"], "best")
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
def test_warm_start_set_at_init(self):
# Smoke test for bug where warm_start=True is set at init
y = self.X[:, 0]
regressor = PySRRegressor(warm_start=True, max_evals=10)
regressor.fit(self.X, y)
def test_noisy_builtin_variable_names(self):
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
)
# We expect in this case that the "best"
# equation should be the right one:
model.set_params(model_selection="best")
# Also try without a temp equation file:
model.set_params(temp_equation_file=False)
# We also test builtin variable names
model.fit(self.X, y, variable_names=["exec", "hash", "x3", "x4", "x5"])
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
self.assertIn("exec", model.latex()[0])
self.assertIn("hash", model.latex()[1])
def test_pandas_resample_with_nested_constraints(self):
X = pd.DataFrame(
{
"T": self.rstate.randn(500),
"x": self.rstate.randn(500),
"unused_feature": self.rstate.randn(500),
}
)
def true_fn(x):
return np.array(x["T"] + x["x"] ** 2 + 1.323837)
y = true_fn(X)
noise = self.rstate.randn(500) * 0.01
y = y + noise
# We also test y as a pandas array:
y = pd.Series(y)
# Resampled array is a different order of features:
Xresampled = pd.DataFrame(
{
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
"T": self.rstate.randn(100),
}
)
model = PySRRegressor(
unary_operators=[],
binary_operators=["+", "*", "/", "-"],
**self.default_test_kwargs,
denoise=True,
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7",
)
model.fit(X, y, Xresampled=Xresampled)
self.assertNotIn("unused_feature", model.latex())
self.assertIn("T", model.latex())
self.assertIn("x", model.latex())
self.assertLessEqual(model.get_best()["loss"], 1e-1)
fn = model.get_best()["lambda_format"]
X2 = pd.DataFrame(
{
"T": self.rstate.randn(100),
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
}
)
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1)
def test_high_dim_selection_early_stop(self):
X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)})
Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)})
y = X["k7"] ** 2 + np.cos(X["k9"]) * 3
model = PySRRegressor(
unary_operators=["cos"],
select_k_features=3,
early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE
maxsize=12,
**self.default_test_kwargs,
)
model.set_params(model_selection="accuracy")
model.fit(X, y, Xresampled=Xresampled)
self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4)
# Again, but with numpy arrays:
model.fit(X.values, y.values, Xresampled=Xresampled.values)
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)
def test_load_model(self):
"""See if we can load a ran model from the equation file."""
csv_file_data = """Complexity,Loss,Equation
1,0.19951081,"1.9762075"
3,0.12717344,"(f0 + 1.4724599)"
4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
# Strip the indents:
csv_file_data = "\n".join([line.strip() for line in csv_file_data.split("\n")])
for from_backup in [False, True]:
rand_dir = Path(tempfile.mkdtemp())
equation_filename = str(rand_dir / "equation.csv")
with open(equation_filename + (".bkup" if from_backup else ""), "w") as f:
f.write(csv_file_data)
model = PySRRegressor.from_file(
equation_filename,
n_features_in=5,
feature_names_in=["f0", "f1", "f2", "f3", "f4"],
binary_operators=["+", "*", "/", "-", "^"],
unary_operators=["cos"],
)
X = self.rstate.rand(100, 5)
y_truth = 2.2683423 ** np.cos(X[:, 3])
y_test = model.predict(X, 2)
np.testing.assert_allclose(y_truth, y_test)
def test_load_model_simple(self):
# Test that we can simply load a model from its equation file.
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
)
rand_dir = Path(tempfile.mkdtemp())
equation_file = rand_dir / "equations.csv"
model.set_params(temp_equation_file=False)
model.set_params(equation_file=equation_file)
model.fit(self.X, y)
# lambda functions are removed from the pickling, so we need
# to pass it during the loading:
model2 = PySRRegressor.from_file(
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
)
np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X))
# Try again, but using only the pickle file:
for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]:
if os.path.exists(file_to_delete):
os.remove(file_to_delete)
# pickle_file = rand_dir / "equations.pkl"
model3 = PySRRegressor.from_file(
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
)
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))
def test_jl_function_error(self):
# TODO: Move this to better class
with self.assertRaises(ValueError) as cm:
PySRRegressor(unary_operators=["1"]).fit([[1]], [1])
self.assertIn(
"When building `unary_operators`, `'1'` did not return a Julia function",
str(cm.exception),
)
def manually_create_model(equations, feature_names=None):
if feature_names is None:
feature_names = ["x0", "x1"]
model = PySRRegressor(
progress=False,
niterations=1,
extra_sympy_mappings={},
output_jax_format=False,
model_selection="accuracy",
equation_file="equation_file.csv",
)
# Set up internal parameters as if it had been fitted:
if isinstance(equations, list):
# Multi-output.
model.equation_file_ = "equation_file.csv"
model.nout_ = len(equations)
model.selection_mask_ = None
model.feature_names_in_ = np.array(feature_names, dtype=object)
for i in range(model.nout_):
equations[i]["complexity loss equation".split(" ")].to_csv(
f"equation_file.csv.out{i+1}.bkup"
)
else:
model.equation_file_ = "equation_file.csv"
model.nout_ = 1
model.selection_mask_ = None
model.feature_names_in_ = np.array(feature_names, dtype=object)
equations["complexity loss equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh()
return model
class TestBest(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(10, 2)
self.y = np.cos(self.X[:, 0]) ** 2
equations = pd.DataFrame(
{
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"loss": [1.0, 0.1, 1e-5],
"complexity": [1, 2, 3],
}
)
self.model = manually_create_model(equations)
self.equations_ = self.model.equations_
def test_best(self):
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
def test_index_selection(self):
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0")))
self.assertEqual(self.model.sympy(0), 1.0)
def test_best_tex(self):
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
def test_best_lambda(self):
X = self.X
y = self.y
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
np.testing.assert_almost_equal(f(X), y, decimal=3)
def test_all_selection_strategies(self):
equations = pd.DataFrame(
dict(
loss=[1.0, 0.1, 0.01, 0.001 * 1.4, 0.001],
score=[0.5, 1.0, 0.5, 0.5, 0.3],
)
)
idx_accuracy = idx_model_selection(equations, "accuracy")
self.assertEqual(idx_accuracy, 4)
idx_best = idx_model_selection(equations, "best")
self.assertEqual(idx_best, 3)
idx_score = idx_model_selection(equations, "score")
self.assertEqual(idx_score, 1)
class TestFeatureSelection(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
def test_feature_selection(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
selected = run_feature_selection(X, y, select_k_features=2)
np.testing.assert_array_equal(selected, [False, False, True, True, False])
def test_feature_selection_handler(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
var_names = [f"x{i}" for i in range(5)]
selected_X, selection = _handle_feature_selection(
X,
select_k_features=2,
variable_names=var_names,
y=y,
)
np.testing.assert_array_equal(selection, [False, False, True, True, False])
selected_var_names = [var_names[i] for i in range(5) if selection[i]]
self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
np.testing.assert_array_equal(
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
)
class TestMiscellaneous(unittest.TestCase):
"""Test miscellaneous functions."""
def test_csv_to_pkl_conversion(self):
"""Test that csv filename to pkl filename works as expected."""
tmpdir = Path(tempfile.mkdtemp())
equation_file = tmpdir / "equations.389479384.28378374.csv"
expected_pkl_file = tmpdir / "equations.389479384.28378374.pkl"
# First, test inputting the paths:
test_pkl_file = _csv_filename_to_pkl_filename(equation_file)
self.assertEqual(test_pkl_file, str(expected_pkl_file))
# Next, test inputting the strings.
test_pkl_file = _csv_filename_to_pkl_filename(str(equation_file))
self.assertEqual(test_pkl_file, str(expected_pkl_file))
def test_pickle_with_temp_equation_file(self):
"""If we have a temporary equation file, unpickle the estimator."""
model = PySRRegressor(
populations=int(1 + DEFAULT_POPULATIONS / 5),
temp_equation_file=True,
procs=0,
multithreading=False,
)
nout = 3
X = np.random.randn(100, 2)
y = np.random.randn(100, nout)
model.fit(X, y)
contents = model.equation_file_contents_.copy()
y_predictions = model.predict(X)
equation_file_base = model.equation_file_
for i in range(1, nout + 1):
assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup")
with tempfile.NamedTemporaryFile() as pickle_file:
pkl.dump(model, pickle_file)
pickle_file.seek(0)
model2 = pkl.load(pickle_file)
contents2 = model2.equation_file_contents_
cols_to_check = ["equation", "loss", "complexity"]
for frame1, frame2 in zip(contents, contents2):
pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check])
y_predictions2 = model2.predict(X)
np.testing.assert_array_almost_equal(y_predictions, y_predictions2)
def test_scikit_learn_compatibility(self):
"""Test PySRRegressor compatibility with scikit-learn."""
model = PySRRegressor(
niterations=int(1 + DEFAULT_NITERATIONS / 10),
populations=int(1 + DEFAULT_POPULATIONS / 3),
ncycles_per_iteration=int(2 + DEFAULT_NCYCLES / 10),
verbosity=0,
progress=False,
random_state=0,
deterministic=True, # Deterministic as tests require this.
procs=0,
multithreading=False,
warm_start=False,
temp_equation_file=True,
) # Return early.
check_generator = check_estimator(model, generate_only=True)
exception_messages = []
for _, check in check_generator:
if check.func.__name__ == "check_complex_data":
# We can use complex data, so avoid this check.
continue
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
check(model)
print("Passed", check.func.__name__)
except Exception:
error_message = str(traceback.format_exc())
exception_messages.append(
f"{check.func.__name__}:\n" + error_message + "\n"
)
print("Failed", check.func.__name__, "with:")
# Add a leading tab to error message, which
# might be multi-line:
print("\n".join([(" " * 4) + row for row in error_message.split("\n")]))
# If any checks failed don't let the test pass.
self.assertEqual(len(exception_messages), 0)
def test_param_groupings(self):
"""Test that param_groupings are complete"""
param_groupings_file = Path(__file__).parent.parent / "param_groupings.yml"
if not param_groupings_file.exists():
return
# Read the file, discarding lines ending in ":",
# and removing leading "\s*-\s*":
params = []
with open(param_groupings_file, "r") as f:
for line in f.readlines():
if line.strip().endswith(":"):
continue
if line.strip().startswith("-"):
params.append(line.strip()[1:].strip())
regressor_params = [
p for p in DEFAULT_PARAMS.keys() if p not in ["self", "kwargs"]
]
# Check the sets are equal:
self.assertSetEqual(set(params), set(regressor_params))
class TestHelpMessages(unittest.TestCase):
"""Test user help messages."""
def test_deprecation(self):
"""Ensure that deprecation works as expected.
This should give a warning, and sets the correct value.
"""
with self.assertWarns(FutureWarning):
model = PySRRegressor(fractionReplaced=0.2)
# This is a deprecated parameter, so we should get a warning.
# The correct value should be set:
self.assertEqual(model.fraction_replaced, 0.2)
def test_deprecated_functions(self):
with self.assertWarns(FutureWarning):
install()
_jl = None
with self.assertWarns(FutureWarning):
_jl = init_julia()
self.assertEqual(_jl, jl)
def test_power_law_warning(self):
"""Ensure that a warning is given for a power law operator."""
with self.assertWarns(UserWarning):
_process_constraints(["^"], [], {})
def test_size_warning(self):
"""Ensure that a warning is given for a large input size."""
model = PySRRegressor()
X = np.random.randn(10001, 2)
y = np.random.randn(10001)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("more than 10,000", str(context.exception))
def test_feature_warning(self):
"""Ensure that a warning is given for large number of features."""
model = PySRRegressor()
X = np.random.randn(100, 10)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("with 10 features or more", str(context.exception))
def test_deterministic_warnings(self):
"""Ensure that warnings are given for determinism"""
model = PySRRegressor(random_state=0)
X = np.random.randn(100, 2)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("`deterministic`", str(context.exception))
def test_deterministic_errors(self):
"""Setting deterministic without random_state should error"""
model = PySRRegressor(deterministic=True)
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y)
def test_extra_sympy_mappings_undefined(self):
"""extra_sympy_mappings=None errors for custom operators"""
model = PySRRegressor(unary_operators=["square2(x) = x^2"])
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y)
def test_sympy_function_fails_as_variable(self):
model = PySRRegressor()
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError) as cm:
model.fit(X, y, variable_names=["x1", "N"])
self.assertIn("Variable name", str(cm.exception))
def test_bad_variable_names_fail(self):
model = PySRRegressor()
X = np.random.randn(100, 1)
y = np.random.randn(100)
with self.assertRaises(ValueError) as cm:
model.fit(X, y, variable_names=["Tr(Tij)"])
self.assertIn("Invalid variable name", str(cm.exception))
with self.assertRaises(ValueError) as cm:
model.fit(X, y, variable_names=["f{c}"])
self.assertIn("Invalid variable name", str(cm.exception))
def test_bad_kwargs(self):
bad_kwargs = [
dict(
kwargs=dict(
elementwise_loss="g(x, y) = 0.0", loss_function="f(*args) = 0.0"
),
error=ValueError,
),
dict(
kwargs=dict(maxsize=3),
error=ValueError,
),
dict(
kwargs=dict(tournament_selection_n=10, population_size=3),
error=ValueError,
),
dict(
kwargs=dict(optimizer_algorithm="COBYLA"),
error=NotImplementedError,
),
dict(
kwargs=dict(
constraints={
"+": (3, 5),
}
),
error=NotImplementedError,
),
dict(
kwargs=dict(binary_operators=["α(x, y) = x - y"]),
error=ValueError,
),
dict(
kwargs=dict(model_selection="unknown"),
error=NotImplementedError,
),
]
for opt in bad_kwargs:
model = PySRRegressor(**opt["kwargs"], niterations=1)
with self.assertRaises(opt["error"]):
model.fit([[1]], [1])
model.get_best()
print("Failed", opt["kwargs"])
def test_suggest_keywords(self):
# Easy
self.assertEqual(
_suggest_keywords(PySRRegressor, "loss_function"), ["loss_function"]
)
# More complex, and with error
with self.assertRaises(TypeError) as cm:
PySRRegressor(ncyclesperiterationn=5)
self.assertIn(
"`ncyclesperiterationn` is not a valid keyword", str(cm.exception)
)
self.assertIn("Did you mean", str(cm.exception))
self.assertIn("`ncycles_per_iteration`, ", str(cm.exception))
self.assertIn("`niterations`", str(cm.exception))
# Farther matches (this might need to be changed)
with self.assertRaises(TypeError) as cm:
PySRRegressor(operators=["+", "-"])
self.assertIn("`unary_operators`, `binary_operators`", str(cm.exception))
def test_issue_666(self):
# Try the equivalent of `from pysr import *`
pysr_module = importlib.import_module("pysr")
names_to_import = pysr_module.__all__
for name in names_to_import:
getattr(pysr_module, name)
TRUE_PREAMBLE = "\n".join(
[
r"\usepackage{breqn}",
r"\usepackage{booktabs}",
"",
"...",
"",
]
)
class TestLaTeXTable(unittest.TestCase):
def setUp(self):
equations = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 8],
)
)
self.model = manually_create_model(equations)
self.maxDiff = None
def create_true_latex(self, middle_part, include_score=False):
if include_score:
true_latex_table_str = r"""
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}cccc@{}}
\toprule
Equation & Complexity & Loss & Score \\
\midrule"""
else:
true_latex_table_str = r"""
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}ccc@{}}
\toprule
Equation & Complexity & Loss \\
\midrule"""
true_latex_table_str += middle_part
true_latex_table_str += r"""\bottomrule
\end{tabular}
\end{center}
\end{table}
"""
# First, remove empty lines:
true_latex_table_str = "\n".join(
[line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0]
)
return true_latex_table_str.strip()
def test_simple_table(self):
latex_table_str = self.model.latex_table(
columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_other_precision(self):
latex_table_str = self.model.latex_table(
precision=5, columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0}$ & $1$ & $1.0520$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_include_score(self):
latex_table_str = self.model.latex_table()
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE
+ "\n"
+ self.create_true_latex(middle_part, include_score=True)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_last_equation(self):
latex_table_str = self.model.latex_table(
indices=[2], columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_multi_output(self):
equations1 = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 8],
)
)
equations2 = pd.DataFrame(
dict(
equation=["x1", "cos(x1)", "x0 * x0 * x1"],
loss=[1.32, 0.052, 2e-15],
complexity=[1, 2, 5],
)
)
equations = [equations1, equations2]
model = manually_create_model(equations)
middle_part_1 = r"""
$y_{0} = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y_{0} = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
$y_{0} = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
"""
middle_part_2 = r"""
$y_{1} = x_{1}$ & $1$ & $1.32$ & $0.0$ \\
$y_{1} = \cos{\left(x_{1} \right)}$ & $2$ & $0.0520$ & $3.23$ \\
$y_{1} = x_{0} x_{0} x_{1}$ & $5$ & $2.00 \cdot 10^{-15}$ & $10.3$ \\
"""
true_latex_table_str = "\n\n".join(
self.create_true_latex(part, include_score=True)
for part in [middle_part_1, middle_part_2]
)
true_latex_table_str = TRUE_PREAMBLE + "\n" + true_latex_table_str
latex_table_str = model.latex_table()
self.assertEqual(latex_table_str, true_latex_table_str)
def test_latex_float_precision(self):
"""Test that we can print latex expressions with custom precision"""
expr = sympy.Float(4583.4485748, dps=50)
self.assertEqual(sympy2latex(expr, prec=6), r"4583.45")
self.assertEqual(sympy2latex(expr, prec=5), r"4583.4")
self.assertEqual(sympy2latex(expr, prec=4), r"4583.")
self.assertEqual(sympy2latex(expr, prec=3), r"4.58 \cdot 10^{3}")
self.assertEqual(sympy2latex(expr, prec=2), r"4.6 \cdot 10^{3}")
# Multiple numbers:
x = sympy.Symbol("x")
expr = x * 3232.324857384 - 1.4857485e-10
self.assertEqual(
sympy2latex(expr, prec=2), r"3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}"
)
self.assertEqual(
sympy2latex(expr, prec=3), r"3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}"
)
self.assertEqual(
sympy2latex(expr, prec=8), r"3232.3249 x - 1.4857485 \cdot 10^{-10}"
)
def test_latex_break_long_equation(self):
"""Test that we can break a long equation inside the table"""
long_equation = """
- cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0
+ 5.2 * sin(0.3256 * sin(x2) - 2.6 * x0) + x0 * x0 * x0 * x0 * x0
+ cos(cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0)
"""
long_equation = "".join(long_equation.split("\n")).strip()
equations = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", long_equation],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 30],
)
)
model = manually_create_model(equations)
latex_table_str = model.latex_table()
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
\begin{minipage}{0.8\linewidth} \vspace{-1em} \begin{dmath*} y = x_{0} x_{0} x_{0} + x_{0} x_{0} x_{0} x_{0} x_{0} + 3.20 x_{0} - 1.20 x_{1} + x_{1} x_{1} x_{1} + 5.20 \sin{\left(- 2.60 x_{0} + 0.326 \sin{\left(x_{2} \right)} \right)} - \cos{\left(x_{0} x_{1} \right)} + \cos{\left(x_{0} x_{0} x_{0} + 3.20 x_{0} - 1.20 x_{1} + x_{1} x_{1} x_{1} + \cos{\left(x_{0} x_{1} \right)} \right)} \end{dmath*} \end{minipage} & $30$ & $1.12 \cdot 10^{-15}$ & $1.09$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE
+ "\n"
+ self.create_true_latex(middle_part, include_score=True)
)
self.assertEqual(latex_table_str, true_latex_table_str)
class TestDimensionalConstraints(unittest.TestCase):
def setUp(self):
self.default_test_kwargs = dict(
progress=False,
model_selection="accuracy",
niterations=DEFAULT_NITERATIONS * 2,
populations=DEFAULT_POPULATIONS * 2,
temp_equation_file=True,
)
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(100, 5)
def test_dimensional_constraints(self):
y = np.cos(self.X[:, [0, 1]])
model = PySRRegressor(
binary_operators=[
"my_add(x, y) = x + y",
"my_sub(x, y) = x - y",
"my_mul(x, y) = x * y",
],
unary_operators=["my_cos(x) = cos(x)"],
**self.default_test_kwargs,
early_stop_condition=1e-8,
select_k_features=3,
extra_sympy_mappings={
"my_cos": sympy.cos,
"my_add": lambda x, y: x + y,
"my_sub": lambda x, y: x - y,
"my_mul": lambda x, y: x * y,
},
)
model.fit(self.X, y, X_units=["m", "m", "m", "m", "m"], y_units=["m", "m"])
# The best expression should have complexity larger than just 2:
for i in range(2):
self.assertGreater(model.get_best()[i]["complexity"], 2)
self.assertLess(model.get_best()[i]["loss"], 1e-6)
simple_eqs = model.equations_[i].query("complexity <= 2")
self.assertTrue(len(simple_eqs) == 0 or simple_eqs.loss.min() > 1e-6)
def test_unit_checks(self):
"""This just checks the number of units passed"""
use_custom_variable_names = False
variable_names = None
complexity_of_variables = 1
weights = None
args = (
use_custom_variable_names,
variable_names,
complexity_of_variables,
weights,
)
valid_units = [
(np.ones((10, 2)), np.ones(10), ["m/s", "s"], "m"),
(np.ones((10, 1)), np.ones(10), ["m/s"], None),
(np.ones((10, 1)), np.ones(10), None, "km/s"),
(np.ones((10, 1)), np.ones(10), None, ["m/s"]),
(np.ones((10, 1)), np.ones((10, 1)), None, ["m/s"]),
(np.ones((10, 1)), np.ones((10, 2)), None, ["m/s", ""]),
]
for X, y, X_units, y_units in valid_units:
_check_assertions(
X,
*args,
y,
X_units,
y_units,
)
invalid_units = [
(np.ones((10, 2)), np.ones(10), ["m/s", "s", "s^2"], None),
(np.ones((10, 2)), np.ones(10), ["m/s", "s", "s^2"], "km"),
(np.ones((10, 2)), np.ones((10, 2)), ["m/s", "s"], ["m"]),
(np.ones((10, 1)), np.ones((10, 1)), "m/s", ["m"]),
]
for X, y, X_units, y_units in invalid_units:
with self.assertRaises(ValueError):
_check_assertions(
X,
*args,
y,
X_units,
y_units,
)
def test_unit_propagation(self):
"""Check that units are propagated correctly.
This also tests that variables have the correct names.
"""
X = np.ones((100, 3))
y = np.ones((100, 1))
temp_dir = Path(tempfile.mkdtemp())
equation_file = str(temp_dir / "equation_file.csv")
model = PySRRegressor(
binary_operators=["+", "*"],
early_stop_condition="(l, c) -> l < 1e-6 && c == 3",
progress=False,
model_selection="accuracy",
niterations=DEFAULT_NITERATIONS * 2,
populations=DEFAULT_POPULATIONS * 2,
complexity_of_constants=10,
weight_mutate_constant=0.0,
should_optimize_constants=False,
multithreading=False,
deterministic=True,
procs=0,
random_state=0,
equation_file=equation_file,
warm_start=True,
)
model.fit(
X,
y,
X_units=["m", "s", "A"],
y_units=["m*A"],
)
best = model.get_best()
self.assertIn("x0", best["equation"])
self.assertNotIn("x1", best["equation"])
self.assertIn("x2", best["equation"])
self.assertEqual(best["complexity"], 3)
self.assertTrue(
model.equations_.iloc[0].complexity > 1
or model.equations_.iloc[0].loss > 1e-6
)
# With pkl file:
pkl_file = str(temp_dir / "equation_file.pkl")
model2 = PySRRegressor.from_file(pkl_file)
best2 = model2.get_best()
self.assertIn("x0", best2["equation"])
# From csv file alone (we need to delete pkl file:)
# First, we delete the pkl file:
os.remove(pkl_file)
model3 = PySRRegressor.from_file(
equation_file, binary_operators=["+", "*"], n_features_in=X.shape[1]
)
best3 = model3.get_best()
self.assertIn("x0", best3["equation"])
# Try warm start, but with no units provided (should
# be a different dataset, and thus different result):
model.early_stop_condition = "(l, c) -> l < 1e-6 && c == 1"
model.fit(X, y)
self.assertEqual(model.equations_.iloc[0].complexity, 1)
self.assertLess(model.equations_.iloc[0].loss, 1e-6)
# TODO: Determine desired behavior if second .fit() call does not have units
def runtests(just_tests=False):
"""Run all tests in test.py."""
test_cases = [
TestPipeline,
TestBest,
TestFeatureSelection,
TestMiscellaneous,
TestHelpMessages,
TestLaTeXTable,
TestDimensionalConstraints,
]
if just_tests:
return test_cases
suite = unittest.TestSuite()
loader = unittest.TestLoader()
for test_case in test_cases:
suite.addTests(loader.loadTestsFromTestCase(test_case))
runner = unittest.TextTestRunner()
return runner.run(suite)
|