Spaces:
Running
Running
File size: 15,660 Bytes
9a7c989 2f38c9c eae8f9c bed9614 af14165 7ed402e 05cf610 6a4fa2c 1adfa85 ad84a1c bed9614 7d4300a 2f38c9c 9a7c989 c200074 a39e08e 14e9a4b 26a3c7f 14e9a4b a39e08e 14e9a4b ed35c4e 7d4300a 2f38c9c af14165 c7187a6 af14165 10ff16a 8e088d6 6146f6b af14165 c7187a6 6146f6b fd42a40 7d4300a af14165 1b17efe fd42a40 af14165 e0e2933 7d4300a bfb135a 7d4300a af14165 c7187a6 2f38c9c c7187a6 af14165 ddb4d52 d9913e3 7a792a8 d85c1a5 ae0b11e ed35c4e 6a4fa2c 5af6354 6a4fa2c af14165 7d4300a 932dcf5 7d4300a 4c67c21 d85c1a5 7d4300a ae0b11e 6a4fa2c b293893 50c7eff b293893 6a4fa2c 775c667 ed35c4e a232b56 58834e8 a232b56 0020398 58834e8 0020398 7d4300a c7187a6 faa83d3 8cfda07 aa16a1e 775c667 aa16a1e c7187a6 aa16a1e 0fba777 5750d1a ed35c4e af14165 ffd9cd1 932dcf5 5750d1a af14165 5750d1a 50f37a0 ffd9cd1 ed35c4e ffd9cd1 ed35c4e ffd9cd1 ad8332d ffd9cd1 ed35c4e ffd9cd1 af14165 ffd9cd1 561e614 ffd9cd1 b13cd4f ffd9cd1 c7187a6 af14165 45d2b5f 1662e82 ffd9cd1 ed35c4e ffd9cd1 45d2b5f ffd9cd1 a190947 224f906 a190947 f266b70 a190947 f266b70 a190947 1adfa85 fbb7cf7 7d4300a ec8124e 7d4300a 1adfa85 ec8124e 7d4300a 1adfa85 c7187a6 f59f827 1adfa85 f59f827 1adfa85 a55fec0 1adfa85 f59f827 1adfa85 c7187a6 51a6b05 97e6589 51a6b05 ed35c4e 51a6b05 ed35c4e 7d4300a 97e6589 ed35c4e 7d4300a 5fac847 7d4300a 5af6354 7d4300a c96b30c ef7a292 7d4300a 97e6589 7d4300a 1662e82 912de01 042b27f fbb7cf7 912de01 ad84a1c c7187a6 912de01 c7187a6 ad84a1c 9137841 ad84a1c 673c1d2 857a9ad c7c02bf 857a9ad c7c02bf bd90cfc 857a9ad f570132 857a9ad c7c02bf 8570a81 bd90cfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import inspect
import unittest
from unittest.mock import patch
import numpy as np
from pysr import PySRRegressor
from pysr.sr import run_feature_selection, _handle_feature_selection
from sklearn.utils.estimator_checks import check_estimator
import sympy
from sympy import lambdify
import pandas as pd
import warnings
class TestPipeline(unittest.TestCase):
def setUp(self):
# Using inspect,
# get default niterations from PySRRegressor, and double them:
default_niterations = (
inspect.signature(PySRRegressor.__init__).parameters["niterations"].default
)
default_populations = (
inspect.signature(PySRRegressor.__init__).parameters["populations"].default
)
self.default_test_kwargs = dict(
model_selection="accuracy",
niterations=default_niterations * 2,
populations=default_populations * 2,
)
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(100, 5)
def test_linear_relation(self):
y = self.X[:, 0]
model = PySRRegressor(**self.default_test_kwargs)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_multiprocessing(self):
y = self.X[:, 0]
model = PySRRegressor(**self.default_test_kwargs, procs=2, multithreading=False)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4)
def test_multioutput_custom_operator_quiet_custom_complexity(self):
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
unary_operators=["square_op(x) = x^2"],
extra_sympy_mappings={"square_op": lambda x: x**2},
complexity_of_operators={"square_op": 2, "plus": 1},
binary_operators=["plus"],
verbosity=0,
**self.default_test_kwargs,
procs=0,
# Test custom operators with constraints:
nested_constraints={"square_op": {"square_op": 3}},
constraints={"square_op": 10},
)
model.fit(self.X, y)
equations = model.equations_
print(equations)
self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"])
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4)
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4)
test_y1 = model.predict(self.X)
test_y2 = model.predict(self.X, index=[-1, -1])
mse1 = np.average((test_y1 - y) ** 2)
mse2 = np.average((test_y2 - y) ** 2)
self.assertLessEqual(mse1, 1e-4)
self.assertLessEqual(mse2, 1e-4)
bad_y = model.predict(self.X, index=[0, 0])
bad_mse = np.average((bad_y - y) ** 2)
self.assertGreater(bad_mse, 1e-4)
def test_multioutput_weighted_with_callable_temp_equation(self):
X = self.X.copy()
y = X[:, [0, 1]] ** 2
w = self.rstate.rand(*y.shape)
w[w < 0.5] = 0.0
w[w >= 0.5] = 1.0
# Double equation when weights are 0:
y = (2 - w) * y
# Thus, pysr needs to use the weights to find the right equation!
model = PySRRegressor(
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
temp_equation_file=True,
delete_tempfiles=False,
)
model.fit(X.copy(), y, weights=w)
# These tests are flaky, so don't fail test:
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=4
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[0])
print("True equation: x0^2")
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=4
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[1])
print("True equation: x1^2")
def test_empty_operators_single_input_warm_start(self):
X = self.rstate.randn(100, 1)
y = X[:, 0] + 3.0
regressor = PySRRegressor(
unary_operators=[],
binary_operators=["plus"],
**self.default_test_kwargs,
)
self.assertTrue("None" in regressor.__repr__())
regressor.fit(X, y)
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Test if repeated fit works:
regressor.set_params(niterations=0, warm_start=True)
# This should exit immediately, and use the old equations
regressor.fit(X, y)
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Tweak model selection:
regressor.set_params(model_selection="best")
self.assertEqual(regressor.get_params()["model_selection"], "best")
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
def test_noisy(self):
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
)
model.fit(self.X, y)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
def test_pandas_resample_with_nested_constraints(self):
X = pd.DataFrame(
{
"T": self.rstate.randn(500),
"x": self.rstate.randn(500),
"unused_feature": self.rstate.randn(500),
}
)
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
y = true_fn(X)
noise = self.rstate.randn(500) * 0.01
y = y + noise
# We also test y as a pandas array:
y = pd.Series(y)
# Resampled array is a different order of features:
Xresampled = pd.DataFrame(
{
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
"T": self.rstate.randn(100),
}
)
model = PySRRegressor(
unary_operators=[],
binary_operators=["+", "*", "/", "-"],
**self.default_test_kwargs,
denoise=True,
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
)
model.fit(X, y, Xresampled=Xresampled)
self.assertNotIn("unused_feature", model.latex())
self.assertIn("T", model.latex())
self.assertIn("x", model.latex())
self.assertLessEqual(model.get_best()["loss"], 1e-1)
fn = model.get_best()["lambda_format"]
X2 = pd.DataFrame(
{
"T": self.rstate.randn(100),
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
}
)
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1)
def test_high_dim_selection_early_stop(self):
X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)})
Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)})
y = X["k7"] ** 2 + np.cos(X["k9"]) * 3
model = PySRRegressor(
unary_operators=["cos"],
select_k_features=3,
early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE
maxsize=12,
**self.default_test_kwargs,
)
model.set_params(model_selection="accuracy")
model.fit(X, y, Xresampled=Xresampled)
self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4)
# Again, but with numpy arrays:
model.fit(X.values, y.values, Xresampled=Xresampled.values)
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)
class TestBest(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(10, 2)
self.y = np.cos(self.X[:, 0]) ** 2
self.model = PySRRegressor(
niterations=1,
extra_sympy_mappings={},
output_jax_format=False,
model_selection="accuracy",
equation_file="equation_file.csv",
)
self.model.fit(self.X, self.y)
equations = pd.DataFrame(
{
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"loss": [1.0, 0.1, 1e-5],
"complexity": [1, 2, 3],
}
)
equations["complexity loss equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
self.model.refresh()
self.equations_ = self.model.equations_
def test_best(self):
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
def test_index_selection(self):
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0")))
self.assertEqual(self.model.sympy(0), 1.0)
def test_best_tex(self):
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
def test_best_lambda(self):
X = self.X
y = self.y
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
np.testing.assert_almost_equal(f(X), y, decimal=4)
class TestFeatureSelection(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
def test_feature_selection(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
selected = run_feature_selection(X, y, select_k_features=2)
self.assertEqual(sorted(selected), [2, 3])
def test_feature_selection_handler(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
var_names = [f"x{i}" for i in range(5)]
selected_X, selection = _handle_feature_selection(
X,
select_k_features=2,
variable_names=var_names,
y=y,
)
self.assertTrue((2 in selection) and (3 in selection))
selected_var_names = [var_names[i] for i in selection]
self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
np.testing.assert_array_equal(
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
)
class TestMiscellaneous(unittest.TestCase):
"""Test miscellaneous functions."""
def setUp(self):
# Allows all scikit-learn exception messages to be read.
self.maxDiff = None
def test_deprecation(self):
"""Ensure that deprecation works as expected.
This should give a warning, and sets the correct value.
"""
with self.assertWarns(FutureWarning):
model = PySRRegressor(fractionReplaced=0.2)
# This is a deprecated parameter, so we should get a warning.
# The correct value should be set:
self.assertEqual(model.fraction_replaced, 0.2)
def test_size_warning(self):
"""Ensure that a warning is given for a large input size."""
model = PySRRegressor(max_evals=10000, populations=2)
X = np.random.randn(10001, 2)
y = np.random.randn(10001)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("more than 10,000", str(context.exception))
def test_feature_warning(self):
"""Ensure that a warning is given for large number of features."""
model = PySRRegressor()
X = np.random.randn(100, 10)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("with 10 features or more", str(context.exception))
def test_scikit_learn_compatibility(self):
"""Test PySRRegressor compatibility with scikit-learn."""
model = PySRRegressor(
max_evals=10000, verbosity=0, progress=False
) # Return early.
# TODO: Add deterministic option so that we can test these.
# (would require backend changes, and procs=0 for serialism.)
check_generator = check_estimator(model, generate_only=True)
tests_requiring_determinism = [
"check_regressors_int", # PySR is not deterministic, so fails this.
"check_regressor_data_not_an_array",
"check_supervised_y_2d",
"check_regressors_int",
"check_fit_idempotent",
]
exception_messages = []
for (_, check) in check_generator:
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# To ensure an equation file is written for each output in
# nout, set stop condition to niterations=1
if check.func.__name__ == "check_regressor_multioutput":
model.set_params(niterations=1, max_evals=None)
else:
model.set_params(max_evals=10000)
check(model)
print("Passed", check.func.__name__)
except Exception as e:
error_message = str(e)
failed_tolerance_check = "Not equal to tolerance" in error_message
if (
failed_tolerance_check
and check.func.__name__ in tests_requiring_determinism
):
# Skip test as PySR is not deterministic.
print(
"Failed",
check.func.__name__,
"which is an allowed failure, as the test requires determinism.",
)
else:
exception_messages.append(
f"{check.func.__name__}: {error_message}\n"
)
print("Failed", check.func.__name__, "with:")
# Add a leading tab to error message, which
# might be multi-line:
print(
"\n".join(
[(" " * 4) + row for row in error_message.split("\n")]
)
)
# If any checks failed don't let the test pass.
self.assertEqual([], exception_messages)
|