Spaces:
Running
Running
# Features and Options | |
Some configurable features and options in `PySR` which you | |
may find useful include: | |
- `model_selection` | |
- `binary_operators`, `unary_operators` | |
- `niterations` | |
- `ncyclesperiteration` | |
- `procs` | |
- `populations` | |
- `weights` | |
- `maxsize`, `maxdepth` | |
- `batching`, `batchSize` | |
- `variable_names` (or pandas input) | |
- Constraining operator complexity | |
- LaTeX, SymPy | |
- Callable exports: numpy, pytorch, jax | |
- `loss` | |
These are described below | |
The program will output a pandas DataFrame containing the equations | |
to `PySRRegressor.equations` containing the loss value | |
and complexity. | |
It will also dump to a csv | |
at the end of every iteration, | |
which is `.hall_of_fame_{date_time}.csv` by default. | |
It also prints the equations to stdout. | |
## Model selection | |
By default, `PySRRegressor` uses `model_selection='best'` | |
which selects an equation from `PySRRegressor.equations` using | |
a combination of accuracy and complexity. | |
You can also select `model_selection='accuracy'`. | |
By printing a model (i.e., `print(model)`), you can see | |
the equation selection with the arrow shown in the `pick` column. | |
## Operators | |
A list of operators can be found on the operators page. | |
One can define custom operators in Julia by passing a string: | |
```python | |
PySRRegressor(niterations=100, | |
binary_operators=["mult", "plus", "special(x, y) = x^2 + y"], | |
extra_sympy_mappings={'special': lambda x, y: x**2 + y}, | |
unary_operators=["cos"]) | |
``` | |
Now, the symbolic regression code can search using this `special` function | |
that squares its left argument and adds it to its right. Make sure | |
all passed functions are valid Julia code, and take one (unary) | |
or two (binary) float32 scalars as input, and output a float32. This means if you | |
write any real constants in your operator, like `2.5`, you have to write them | |
instead as `2.5f0`, which defines it as `Float32`. | |
Operators are automatically vectorized. | |
One should also define `extra_sympy_mappings`, | |
so that the SymPy code can understand the output equation from Julia, | |
when constructing a useable function. This step is optional, but | |
is necessary for the `lambda_format` to work. | |
## Iterations | |
This is the total number of generations that `pysr` will run for. | |
I usually set this to a large number, and exit when I am satisfied | |
with the equations. | |
## Cycles per iteration | |
Each cycle considers every 10-equation subsample (re-sampled for each individual 10, | |
unless `fast_cycle` is set in which case the subsamples are separate groups of equations) | |
a single time, producing one mutated equation for each. | |
The parameter `ncyclesperiteration` defines how many times this | |
occurs before the equations are compared to the hall of fame, | |
and new equations are migrated from the hall of fame, or from other populations. | |
It also controls how slowly annealing occurs. You may find that increasing | |
`ncyclesperiteration` results in a higher cycles-per-second, as the head | |
worker needs to reduce and distribute new equations less often, and also increases | |
diversity. But at the same | |
time, a smaller number it might be that migrating equations from the hall of fame helps | |
each population stay closer to the best current equations. | |
## Processors | |
One can adjust the number of workers used by Julia with the | |
`procs` option. You should set this equal to the number of cores | |
you want `pysr` to use. | |
## Populations | |
By default, `populations=100`, but you can set a different | |
number of populations with this option. | |
More populations may increase | |
the diversity of equations discovered, though will take longer to train. | |
However, it is usually more efficient to have `populations>procs`, | |
as there are multiple populations running | |
on each core. | |
## Weighted data | |
Here, we assign weights to each row of data | |
using inverse uncertainty squared. We also use 10 processes | |
instead of the usual 4, which creates more populations | |
(one population per thread). | |
```python | |
sigma = ... | |
weights = 1/sigma**2 | |
model = PySRRegressor(procs=10) | |
model.fit(X, y, weights=weights) | |
``` | |
## Max size | |
`maxsize` controls the maximum size of equation (number of operators, | |
constants, variables). `maxdepth` is by default not used, but can be set | |
to control the maximum depth of an equation. These will make processing | |
faster, as longer equations take longer to test. | |
One can warm up the maxsize from a small number to encourage | |
PySR to start simple, by using the `warmupMaxsize` argument. | |
This specifies that maxsize increases every `warmupMaxsize`. | |
## Batching | |
One can turn on mini-batching, with the `batching` flag, | |
and control the batch size with `batchSize`. This will make | |
evolution faster for large datasets. Equations are still evaluated | |
on the entire dataset at the end of each iteration to compare to the hall | |
of fame, but only on a random subset during mutations and annealing. | |
## Variable Names | |
You can pass a list of strings naming each column of `X` with | |
`variable_names`. Alternatively, you can pass `X` as a pandas dataframe | |
and the columns will be used as variable names. Make sure only | |
alphabetical characters and `_` are used in these names. | |
## Constraining operator complexity | |
One can limit the complexity of specific operators with the `constraints` parameter. | |
There is a "maxsize" parameter to PySR, but there is also an operator-level | |
"constraints" parameter. One supplies a dict, like so: | |
```python | |
constraints={'pow': (-1, 1), 'mult': (3, 3), 'cos': 5} | |
``` | |
What this says is that: a power law x^y can have an expression of arbitrary (-1) complexity in the x, but only complexity 1 (e.g., a constant or variable) in the y. So (x0 + 3)^5.5 is allowed, but 5.5^(x0 + 3) is not. | |
I find this helps a lot for getting more interpretable equations. | |
The other terms say that each multiplication can only have sub-expressions | |
of up to complexity 3 (e.g., 5.0 + x2) in each side, and cosine can only operate on | |
expressions of complexity 5 (e.g., 5.0 + x2 exp(x3)). | |
## LaTeX, SymPy | |
After running `model.fit(...)`, you can look at | |
`model.equations` which is a pandas dataframe. | |
The `sympy_format` column gives sympy equations, | |
and the `lambda_format` gives callable functions. | |
You can optionally pass a pandas dataframe to the callable function, | |
if you called `.fit` on a pandas dataframe as well. | |
There are also some helper functions for doing this quickly. | |
- `model.latex()` will generate a TeX formatted output of your equation. | |
- `model.sympy()` will return the SymPy representation. | |
- `model.jax()` will return a callable JAX function combined with parameters (see below) | |
- `model.pytorch()` will return a PyTorch model (see below). | |
## Callable exports: numpy, pytorch, jax | |
By default, the dataframe of equations will contain columns | |
with the identifier `lambda_format`. | |
These are simple functions which correspond to the equation, but executed | |
with numpy functions. | |
You can pass your `X` matrix to these functions | |
just as you did to the `model.fit` call. Thus, this allows | |
you to numerically evaluate the equations over different output. | |
Calling `model.predict` will execute the `lambda_format` of | |
the best equation, and return the result. If you selected | |
`model_selection="best"`, this will use an equation that combines | |
accuracy with simplicity. For `model_selection="accuracy"`, this will just | |
look at accuracy. | |
One can do the same thing for PyTorch, which uses code | |
from [sympytorch](https://github.com/patrick-kidger/sympytorch), | |
and for JAX, which uses code from | |
[sympy2jax](https://github.com/MilesCranmer/sympy2jax). | |
Calling `model.pytorch()` will return | |
a PyTorch module which runs the equation, using PyTorch functions, | |
over `X` (as a PyTorch tensor). This is differentiable, and the | |
parameters of this PyTorch module correspond to the learned parameters | |
in the equation, and are trainable. | |
```python | |
torch_model = model.pytorch() | |
torch_model(X) | |
``` | |
**Warning: If you are using custom operators, you must define `extra_torch_mappings` or `extra_jax_mappings` (both are `dict` of callables) to provide an equivalent definition of the functions.** (At any time you can set these parameters or any others with `model.set_params`.) | |
For JAX, you can equivalently call `model.jax()` | |
This will return a dictionary containing a `'callable'` (a JAX function), | |
and `'parameters'` (a list of parameters in the equation). | |
You can execute this function with: | |
```python | |
jax_model = model.jax() | |
jax_model['callable'](X, jax_model['parameters']) | |
``` | |
Since the parameter list is a jax array, this therefore lets you also | |
train the parameters within JAX (and is differentiable). | |
## `loss` | |
The default loss is mean-square error, and weighted mean-square error. | |
One can pass an arbitrary Julia string to define a custom loss, using, | |
e.g., `loss="myloss(x, y) = abs(x - y)^1.5"`. For more details, | |
see the | |
[Losses](https://milescranmer.github.io/SymbolicRegression.jl/dev/losses/) | |
page for SymbolicRegression.jl. | |
Here are some additional examples: | |
abs(x-y) loss | |
```python | |
PySRRegressor(..., loss="f(x, y) = abs(x - y)^1.5") | |
``` | |
Note that the function name doesn't matter: | |
```python | |
PySRRegressor(..., loss="loss(x, y) = abs(x * y)") | |
``` | |
With weights: | |
```python | |
model = PySRRegressor(..., loss="myloss(x, y, w) = w * abs(x - y)") | |
model.fit(..., weights=weights) | |
``` | |
Weights can be used in arbitrary ways: | |
```python | |
model = PySRRegressor(..., weights=weights, loss="myloss(x, y, w) = abs(x - y)^2/w^2") | |
model.fit(..., weights=weights) | |
``` | |
Built-in loss (faster) (see [losses](https://astroautomata.com/SymbolicRegression.jl/dev/losses/)). | |
This one computes the L3 norm: | |
```python | |
PySRRegressor(..., loss="LPDistLoss{3}()") | |
``` | |
Can also uses these losses for weighted (weighted-average): | |
```python | |
model = PySRRegressor(..., weights=weights, loss="LPDistLoss{3}()") | |
model.fit(..., weights=weights) | |
``` | |