Spaces:
Running
Running
# Getting Started | |
## Installation | |
PySR uses both Julia and Python, so you need to have both installed. | |
Install Julia - see [downloads](https://julialang.org/downloads/), and | |
then instructions for [mac](https://julialang.org/downloads/platform/#macos) | |
and [linux](https://julialang.org/downloads/platform/#linux_and_freebsd). | |
(Don't use the `conda-forge` version; it doesn't seem to work properly.) | |
You can install PySR with: | |
```bash | |
pip3 install pysr | |
python3 -c 'import pysr; pysr.install()' | |
``` | |
The second line will install and update the required Julia packages, including | |
`PyCall.jl`. | |
## Quickstart | |
```python | |
import numpy as np | |
from pysr import pysr, best, get_hof | |
# Dataset | |
X = 2*np.random.randn(100, 5) | |
y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2 | |
# Learn equations | |
equations = pysr(X, y, niterations=5, | |
binary_operators=["plus", "mult"], | |
unary_operators=["cos", "exp", "sin"]) | |
...# (you can use ctl-c to exit early) | |
print(best()) | |
``` | |
which gives: | |
```python | |
x0**2 + 2.000016*cos(x3) - 1.9999845 | |
``` | |
The second and additional calls of `pysr` will be significantly | |
faster in startup time, since the first call to Julia will compile | |
and cache functions from the symbolic regression backend. | |
One can also use `best_tex` to get the LaTeX form, | |
or `best_callable` to get a function you can call. | |
This uses a score which balances complexity and error; | |
however, one can see the full list of equations with: | |
```python | |
print(get_hof()) | |
``` | |
This is a pandas table, with additional columns: | |
- `MSE` - the mean square error of the formula | |
- `score` - a metric akin to Occam's razor; you should use this to help select the "true" equation. | |
- `sympy_format` - sympy equation. | |
- `lambda_format` - a lambda function for that equation, that you can pass values through. | |