Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
b4e0cde
1
Parent(s):
64b444d
Add crossover to hyperparam optimization
Browse files- benchmarks/hyperparamopt.py +18 -11
benchmarks/hyperparamopt.py
CHANGED
@@ -11,7 +11,7 @@ from hyperopt.fmin import generate_trials_to_calculate
|
|
11 |
################################################################################
|
12 |
TRIALS_FOLDER = "trials2"
|
13 |
NUMBER_TRIALS_PER_RUN = 1
|
14 |
-
timeout_in_minutes =
|
15 |
|
16 |
# Test run to compile everything:
|
17 |
binary_operators = ["*", "/", "+", "-"]
|
@@ -162,10 +162,12 @@ space = dict(
|
|
162 |
weightRandomize=hp.loguniform("weightRandomize", np.log(0.0001), np.log(100)),
|
163 |
# weightSimplify=0.002,
|
164 |
weightSimplify=hp.choice("weightSimplify", [0.002]), # One of these is fixed.
|
|
|
|
|
165 |
# perturbationFactor=1.0,
|
166 |
perturbationFactor=hp.loguniform("perturbationFactor", np.log(0.0001), np.log(100)),
|
167 |
# maxsize=20,
|
168 |
-
maxsize=hp.choice("maxsize", [
|
169 |
# warmupMaxsizeBy=0.0,
|
170 |
warmupMaxsizeBy=hp.uniform("warmupMaxsizeBy", 0.0, 0.5),
|
171 |
# useFrequency=True,
|
@@ -180,6 +182,8 @@ space = dict(
|
|
180 |
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
|
181 |
)
|
182 |
|
|
|
|
|
183 |
init_vals = [
|
184 |
dict(
|
185 |
model_selection=0, # 0 means first choice
|
@@ -187,15 +191,15 @@ init_vals = [
|
|
187 |
unary_operators=0,
|
188 |
populations=100.0,
|
189 |
niterations=0,
|
190 |
-
ncyclesperiteration=
|
191 |
-
alpha=0.
|
192 |
annealing=0,
|
193 |
# fractionReplaced=0.01,
|
194 |
fractionReplaced=0.01,
|
195 |
# fractionReplacedHof=0.005,
|
196 |
fractionReplacedHof=0.005,
|
197 |
# npop=100,
|
198 |
-
npop=
|
199 |
# parsimony=1e-4,
|
200 |
parsimony=1e-4,
|
201 |
# topn=10,
|
@@ -216,6 +220,8 @@ init_vals = [
|
|
216 |
weightRandomize=1.0,
|
217 |
# weightSimplify=0.002,
|
218 |
weightSimplify=0, # One of these is fixed.
|
|
|
|
|
219 |
# perturbationFactor=1.0,
|
220 |
perturbationFactor=1.0,
|
221 |
# maxsize=20,
|
@@ -231,7 +237,7 @@ init_vals = [
|
|
231 |
# optimizer_iterations=10,
|
232 |
optimizer_iterations=10.0,
|
233 |
# tournament_selection_p=1.0,
|
234 |
-
tournament_selection_p=0.999,
|
235 |
)
|
236 |
]
|
237 |
|
@@ -273,12 +279,9 @@ n_prior_trials = len(list(glob.glob(path)))
|
|
273 |
|
274 |
loaded_fnames = []
|
275 |
trials = generate_trials_to_calculate(init_vals)
|
276 |
-
i =
|
277 |
n = NUMBER_TRIALS_PER_RUN
|
278 |
|
279 |
-
if i > 0:
|
280 |
-
trials = None
|
281 |
-
|
282 |
# Run new hyperparameter trials until killed
|
283 |
while True:
|
284 |
np.random.seed()
|
@@ -331,7 +334,11 @@ while True:
|
|
331 |
hyperopt_trial = Trials()
|
332 |
|
333 |
# Merge with empty trials dataset:
|
334 |
-
|
|
|
|
|
|
|
|
|
335 |
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
|
336 |
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
|
337 |
loaded_fnames.append(new_fname)
|
|
|
11 |
################################################################################
|
12 |
TRIALS_FOLDER = "trials2"
|
13 |
NUMBER_TRIALS_PER_RUN = 1
|
14 |
+
timeout_in_minutes = 10
|
15 |
|
16 |
# Test run to compile everything:
|
17 |
binary_operators = ["*", "/", "+", "-"]
|
|
|
162 |
weightRandomize=hp.loguniform("weightRandomize", np.log(0.0001), np.log(100)),
|
163 |
# weightSimplify=0.002,
|
164 |
weightSimplify=hp.choice("weightSimplify", [0.002]), # One of these is fixed.
|
165 |
+
# crossoverProbability=0.01,
|
166 |
+
crossoverProbability=hp.loguniform("crossoverProbability", np.log(0.00001), np.log(0.2)),
|
167 |
# perturbationFactor=1.0,
|
168 |
perturbationFactor=hp.loguniform("perturbationFactor", np.log(0.0001), np.log(100)),
|
169 |
# maxsize=20,
|
170 |
+
maxsize=hp.choice("maxsize", [30]),
|
171 |
# warmupMaxsizeBy=0.0,
|
172 |
warmupMaxsizeBy=hp.uniform("warmupMaxsizeBy", 0.0, 0.5),
|
173 |
# useFrequency=True,
|
|
|
182 |
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
|
183 |
)
|
184 |
|
185 |
+
rand_between = lambda lo, hi: (np.random.rand()*(hi - lo) + lo)
|
186 |
+
|
187 |
init_vals = [
|
188 |
dict(
|
189 |
model_selection=0, # 0 means first choice
|
|
|
191 |
unary_operators=0,
|
192 |
populations=100.0,
|
193 |
niterations=0,
|
194 |
+
ncyclesperiteration=rand_between(50, 150),
|
195 |
+
alpha=rand_between(0.05, 0.2),
|
196 |
annealing=0,
|
197 |
# fractionReplaced=0.01,
|
198 |
fractionReplaced=0.01,
|
199 |
# fractionReplacedHof=0.005,
|
200 |
fractionReplacedHof=0.005,
|
201 |
# npop=100,
|
202 |
+
npop=rand_between(50, 200),
|
203 |
# parsimony=1e-4,
|
204 |
parsimony=1e-4,
|
205 |
# topn=10,
|
|
|
220 |
weightRandomize=1.0,
|
221 |
# weightSimplify=0.002,
|
222 |
weightSimplify=0, # One of these is fixed.
|
223 |
+
# crossoverProbability=0.01
|
224 |
+
crossoverProbability=0.01,
|
225 |
# perturbationFactor=1.0,
|
226 |
perturbationFactor=1.0,
|
227 |
# maxsize=20,
|
|
|
237 |
# optimizer_iterations=10,
|
238 |
optimizer_iterations=10.0,
|
239 |
# tournament_selection_p=1.0,
|
240 |
+
tournament_selection_p=rand_between(0.9, 0.999),
|
241 |
)
|
242 |
]
|
243 |
|
|
|
279 |
|
280 |
loaded_fnames = []
|
281 |
trials = generate_trials_to_calculate(init_vals)
|
282 |
+
i = 0
|
283 |
n = NUMBER_TRIALS_PER_RUN
|
284 |
|
|
|
|
|
|
|
285 |
# Run new hyperparameter trials until killed
|
286 |
while True:
|
287 |
np.random.seed()
|
|
|
334 |
hyperopt_trial = Trials()
|
335 |
|
336 |
# Merge with empty trials dataset:
|
337 |
+
if i == 0:
|
338 |
+
save_trials = merge_trials(hyperopt_trial, trials.trials)
|
339 |
+
else:
|
340 |
+
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
|
341 |
+
|
342 |
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
|
343 |
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
|
344 |
loaded_fnames.append(new_fname)
|