Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
import tensorflow.keras.layers as layers | |
input_shape = (1,54,1) | |
model = tf.keras.models.Sequential() | |
model.add(layers.Conv1D(31, 7, activation='relu', input_shape=input_shape[1:])) | |
model.add(layers.MaxPooling1D(7, data_format='channels_first')) | |
model.add(layers.Conv1D(31, 7, activation='relu')) | |
model.add(layers.MaxPooling1D(7, data_format='channels_first')) | |
model.add(layers.Conv1D(31, 7, activation='relu')) | |
model.add(layers.MaxPooling1D(7, data_format='channels_first')) | |
model.add(layers.GRU(7)) | |
model.add(layers.Dense(18)) | |
model.compile(optimizer='sgd', loss='mse') | |
print("\n===============\n") | |
x = tf.random.normal(input_shape) | |
#print("x: ", x) | |
y = model.evaluate(x) | |
#print("y: ", y) | |
model = layers.Conv1D(31, 7, activation='relu', input_shape=input_shape[1:])(x) | |
print(model.shape) | |
model = layers.MaxPooling1D(7, data_format='channels_first')(model) | |
print(model.shape) | |
model = layers.Conv1D(31, 7, activation='relu')(model) | |
print(model.shape) | |
model = layers.MaxPooling1D(7, data_format='channels_first')(model) | |
print(model.shape) | |
model = layers.Conv1D(31, 7, activation='relu')(model) | |
print(model.shape) | |
model = layers.MaxPooling1D(7, data_format='channels_first')(model) | |
print(model.shape) | |
model = layers.GRU(7)(model) | |
print(model.shape) | |