MohamedRashad's picture
Upload code
6dd488f
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!
import torch
import torch.nn as nn
import einops
from inspect import isfunction
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def nonlinearity(type='silu'):
if type == 'silu':
return nn.SiLU()
elif type == 'leaky_relu':
return nn.LeakyReLU()
def normalization(channels, num_groups=32):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return nn.GroupNorm(num_groups, channels)
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def exists(val):
return val is not None
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def make_temporal_window(x, t, method):
assert method in ['roll', 'prv', 'first']
if method == 'roll':
m = einops.rearrange(x, '(b t) d c -> b t d c', t=t)
l = torch.roll(m, shifts=1, dims=1)
r = torch.roll(m, shifts=-1, dims=1)
recon = torch.cat([l, m, r], dim=2)
del l, m, r
recon = einops.rearrange(recon, 'b t d c -> (b t) d c')
return recon
if method == 'prv':
x = einops.rearrange(x, '(b t) d c -> b t d c', t=t)
prv = torch.cat([x[:, :1], x[:, :-1]], dim=1)
recon = torch.cat([x, prv], dim=2)
del x, prv
recon = einops.rearrange(recon, 'b t d c -> (b t) d c')
return recon
if method == 'first':
x = einops.rearrange(x, '(b t) d c -> b t d c', t=t)
prv = x[:, [0], :, :].repeat(1, t, 1, 1)
recon = torch.cat([x, prv], dim=2)
del x, prv
recon = einops.rearrange(recon, 'b t d c -> (b t) d c')
return recon
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
return torch.utils.checkpoint.checkpoint(func, *inputs, use_reentrant=False)
else:
return func(*inputs)