Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
@@ -10,4 +10,37 @@ pinned: false
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
This simple restaurant planner is designed to communicate with MongoDB Atlas Vector Search with the loaded Restaurant data set.
|
15 |
+
|
16 |
+
It uses OpenAI small text embeddings (256 dimesnsions) to query the database for semantic similarity search.
|
17 |
+
|
18 |
+
## How to setup your own
|
19 |
+
|
20 |
+
1. [Create an Atlas cluter](https://www.mongodb.com/docs/atlas/tutorial/deploy-free-tier-cluster/) (free clusters are available)
|
21 |
+
2. Load the [dataset](https://huggingface.co/datasets/AIatMongoDB/whatscooking.restaurants) using the `ingest/ingest.py` with your connection string.
|
22 |
+
3. Deploy the relevant [Vector Index](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial/#create-the-atlas-vector-search-index) on `whatscooking.smart_trips` aggregated collection "name" : `vector_index`.
|
23 |
+
```
|
24 |
+
{
|
25 |
+
"fields": [
|
26 |
+
{
|
27 |
+
"numDimensions": 256,
|
28 |
+
"path": "embedding",
|
29 |
+
"similarity": "cosine",
|
30 |
+
"type": "vector"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"path": "searchTrip",
|
34 |
+
"type": "filter"
|
35 |
+
}
|
36 |
+
]
|
37 |
+
}
|
38 |
+
```
|
39 |
+
- [Whitelist](https://www.mongodb.com/docs/atlas/security/ip-access-list/#std-label-access-list) access from everywhere (`0.0.0.0/0`)
|
40 |
+
- Locate your [cluster connection](https://www.mongodb.com/docs/atlas/tutorial/connect-to-your-cluster/) URI
|
41 |
+
5. Obtain your Open AI api key
|
42 |
+
6. "Duplicate" this space and input
|
43 |
+
- `MONGODB_ATLAS_CLUSTER_URI` - Your Atlas Cluster connection string
|
44 |
+
- `OPENAI_API_KEY`- Open AI API key
|
45 |
+
|
46 |
+
Build and use the planner!
|