Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "soundfile"]) | |
subprocess.run(["pip", "install", "numpy"]) | |
subprocess.run(["pip", "install", "pydub"]) | |
subprocess.run(["pip", "install", "openai"]) | |
import subprocess | |
subprocess.run(["pip", "install", "datasets"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") | |
model.config.forced_decoder_ids = None | |
# Custom preprocessing function | |
def preprocess_audio(audio_data): | |
# Apply any custom preprocessing to the audio data here if needed | |
return processor(audio_data, return_tensors="pt").input_features | |
# Function to perform ASR on audio data | |
def transcribe_audio(input_features): | |
# Generate token ids | |
predicted_ids = model.generate(input_features) | |
# Decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Create Gradio interface | |
audio_input = gr.Audio(preprocess=preprocess_audio) | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() |