File size: 2,251 Bytes
0495d53 4255cac 0495d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
import tensorflow as tf
from transformers import TFAutoModel, AutoTokenizer
import os
import numpy as np
model_name = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = tf.keras.models.load_model(
"model.h5",
custom_objects={
'TFRobertaModel': TFAutoModel.from_pretrained(model_name)
}
)
labels = [
'Cardiologist',
'Dermatologist',
'ENT Specialist',
'Gastro-enterologist',
'General-Physicians',
'Neurologist/Gastro-enterologist',
'Ophthalmologist',
'Orthopedist',
'Psychiatrist',
'Respirologist',
'Rheumatologist',
'Rheumatologist/Gastro-enterologist',
'Rheumatologist/Orthopedist',
'Surgeon'
]
seq_len = 152
def prep_data(text):
tokens = tokenizer(
text, max_length=seq_len, truncation=True,
padding='max_length',
add_special_tokens=True,
return_tensors='tf'
)
return {
'input_ids': tokens['input_ids'],
'attention_mask': tokens['attention_mask']
}
def inference(text):
encoded_text = prep_data(text)
probs = model.predict_on_batch(encoded_text)
probabilities = {i:j for i,j in zip(labels, list(probs.flatten()))}
return probabilities
css = """
textarea {
background-color: #00000000;
border: 1px solid #6366f160;
}
"""
with gr.Blocks(title="SpecX", css=css, theme=gr.themes.Soft()) as demo:
with gr.Row():
textmd = gr.Markdown('''
<div style="margin: 50px 0;"></div>
<h1 style="width:100%; text-align: center;">SpecX: Find the Right Specialist For Your Symptoms!</h1>
''')
with gr.Row():
with gr.Column(scale=1, min_width=600):
text_box = gr.Textbox(label="Explain your problem in one sentence.")
submit_btn = gr.Button("Submit", elem_id="warningk", variant='primary')
examples = gr.Examples(examples=[
"When I remember her I feel down",
"The area around my heart doesn't feel good.",
"I have a split on my thumb that will not heal."
], inputs=text_box)
label = gr.Label(num_top_classes=4, label="Recommended Specialist")
submit_btn.click(inference, inputs=text_box, outputs=label)
demo.launch() |