Spaces:
Sleeping
Sleeping
File size: 6,568 Bytes
e34a93e 8a239f7 e34a93e 4570a14 e34a93e 991d4cb e34a93e 647c1df d3290a7 e34a93e 6d3966a e34a93e 5627b6e e34a93e 1a697d9 6d3966a e34a93e 8bee69f 54d140a e34a93e 4d141f8 e34a93e 4d141f8 e34a93e 8a239f7 7403c09 8a239f7 e34a93e 8511da7 bfc6846 c16129d 8511da7 af75e7b bfc6846 8511da7 e34a93e b55d206 e34a93e 7145a7c e34a93e f777bc8 e34a93e 8a239f7 e34a93e fb15851 e34a93e 1a697d9 e34a93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
"""
Credit to Derek Thomas, derek@huggingface.co
"""
import subprocess
# subprocess.run(["pip", "install", "--upgrade", "transformers[torch,sentencepiece]==4.34.1"])
import logging
from pathlib import Path
from time import perf_counter
import gradio as gr
from jinja2 import Environment, FileSystemLoader
import numpy as np
from sentence_transformers import CrossEncoder
from backend.query_llm import generate_hf, generate_openai,generate_gemini
from backend.semantic_search import table, retriever
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
# crossEncoder
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
#cross_encoder = CrossEncoder('BAAI/bge-reranker-base')
# Examples
examples = ['My transhipment cargo is missing',
'What are benefits of the AEO Scheme and eligibility criteria?',
'What are penalties for customs offences? ', ]
def add_text(history, text):
history = [] if history is None else history
history = history + [(text, None)]
print('add_text function done..returning history' ,history)
return history, gr.Textbox(value="", interactive=False)
def bot(history, api_kind):
top_rerank = 15
top_k_rank = 5
query = history[-1][0]
print('history[-1][0]',history[-1][0])
print('api kind ',api_kind)
if not query:
gr.Warning("Please submit a non-empty string as a prompt")
raise ValueError("Empty string was submitted")
logger.warning('Retrieving documents...')
# Retrieve documents relevant to query
document_start = perf_counter()
query_vec = retriever.encode(query)
print(query)
query_vec_flat = [arr.flatten() for arr in query_vec]
logger.warning(f'Finished query vec')
#documents = table.search(query_vec_flat, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
logger.warning(f'Finished search')
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
logger.warning(f'start cross encoder {len(documents)}')
# Retrieve documents relevant to query
query_doc_pair = [[query, doc] for doc in documents]
cross_scores = cross_encoder.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
logger.warning(f'Finished cross encoder {len(documents)}')
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
logger.warning(f'num documents {len(documents)}')
document_time = perf_counter() - document_start
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
# Create Prompt
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
if api_kind == "HuggingFace":
generate_fn = generate_hf
elif api_kind == "Gemini":
print("Gemini condition satisfied")
generate_fn = generate_gemini
elif api_kind is None:
gr.Warning("API name was not provided")
raise ValueError("API name was not provided")
else:
gr.Warning(f"API {api_kind} is not supported")
raise ValueError(f"API {api_kind} is not supported")
try:
count_tokens = lambda text: len([token.strip() for token in text.split() if token.strip()])
print(prompt_html,'token count is',count_tokens(prompt_html))
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
yield history, prompt_html
except Exception as e: # Catch any exception
print('An unexpected error occurred during generation:', str(e))
yield f"An unexpected error occurred during generation: {str(e)}"
with gr.Blocks(theme='WeixuanYuan/Soft_dark') as demo:
# Beautiful heading with logo
gr.HTML(value="""
<div style="display: flex; align-items: center; justify-content: space-between;">
<h1 style="color: #008000">ADWITIYA - <span style="color: #008000">Customs Manual Chatbot</span></h1>
<img src='logo.png' alt="Chatbot" width="50" height="50" />
</div>
""", elem_id="heading")
# Formatted description
gr.HTML(value="""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by National Customs Targeting Center using Open source LLMs.(Dedicated to 75th Batch IRS Probationers)</p>""", elem_id="description")
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
api_kind = gr.Radio(choices=["HuggingFace","Gemini"], value="HuggingFace")
prompt_html = gr.HTML()
try:
# Turn off interactivity while generating if you click
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, api_kind], [chatbot, prompt_html])
except Exception as e:
print ('Exception txt btn click ' ,str(e))
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
try:
# Turn off interactivity while generating if you hit enter
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, api_kind], [chatbot, prompt_html])
except Exception as e:
print ('Exception ' ,str(e))
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# Examples
gr.Examples(examples, txt)
demo.queue()
demo.launch(debug=True)
|