File size: 6,373 Bytes
e34a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570a14
e34a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
991d4cb
 
e34a93e
647c1df
 
d3290a7
e34a93e
 
 
 
 
 
 
 
 
 
5627b6e
e34a93e
1a697d9
e34a93e
 
 
 
 
 
 
 
 
 
8bee69f
54d140a
e34a93e
4d141f8
e34a93e
 
 
 
4d141f8
e34a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8511da7
bfc6846
c16129d
8511da7
 
 
 
af75e7b
bfc6846
8511da7
e34a93e
 
 
 
 
7145a7c
e34a93e
 
 
 
 
f777bc8
e34a93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce11f6d
e34a93e
 
fb15851
 
 
 
 
 
e34a93e
 
1a697d9
 
 
 
 
 
e34a93e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

"""
Credit to Derek Thomas, derek@huggingface.co
"""

import subprocess

# subprocess.run(["pip", "install", "--upgrade", "transformers[torch,sentencepiece]==4.34.1"])

import logging
from pathlib import Path
from time import perf_counter

import gradio as gr
from jinja2 import Environment, FileSystemLoader
import numpy as np
from sentence_transformers import CrossEncoder

from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import table, retriever

VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"

proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')

# crossEncoder
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') 
#cross_encoder = CrossEncoder('BAAI/bge-reranker-base')
# Examples
examples = ['My transhipment cargo is missing',
            'What are benefits of  the AEO Scheme and eligibility criteria?',
            'What are penalties for customs offences? ', ]


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def bot(history, api_kind):
    top_rerank = 15
    top_k_rank = 5
    query = history[-1][0]
    print('history[-1][0]',history[-1][0])

    if not query:
         gr.Warning("Please submit a non-empty string as a prompt")
         raise ValueError("Empty string was submitted")

    logger.warning('Retrieving documents...')
    # Retrieve documents relevant to query
    document_start = perf_counter()

    query_vec = retriever.encode(query)
    print(query)
    query_vec_flat = [arr.flatten() for arr in query_vec]
    logger.warning(f'Finished query vec')
    #documents = table.search(query_vec_flat, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()



    logger.warning(f'Finished search')
    documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
    documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
    logger.warning(f'start cross encoder {len(documents)}')
    # Retrieve documents relevant to query
    query_doc_pair = [[query, doc] for doc in documents]
    cross_scores = cross_encoder.predict(query_doc_pair)
    sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
    logger.warning(f'Finished cross encoder {len(documents)}')
    
    documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
    logger.warning(f'num documents {len(documents)}')

    document_time = perf_counter() - document_start
    logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')

    # Create Prompt
    prompt = template.render(documents=documents, query=query)
    prompt_html = template_html.render(documents=documents, query=query)

    if api_kind == "HuggingFace":
         generate_fn = generate_hf
    elif api_kind == "OpenAI":
         generate_fn = generate_openai
    elif api_kind is None:
         gr.Warning("API name was not provided")
         raise ValueError("API name was not provided")
    else:
         gr.Warning(f"API {api_kind} is not supported")
         raise ValueError(f"API {api_kind} is not supported")
    try:
        count_tokens = lambda text: len([token.strip() for token in text.split() if token.strip()])
        print(prompt_html,'token count is',count_tokens(prompt_html))
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character
            yield history, prompt_html
    except Exception as e:  # Catch any exception
        print('An unexpected error occurred during generation:', str(e))
        yield f"An unexpected error occurred during generation: {str(e)}"

with gr.Blocks() as demo:
    # Beautiful heading with logo
    gr.HTML(value="""
    <div style="display: flex; align-items: center; justify-content: space-between;">
      <h1 style="color: #008000">ADWITIYA - <span style="color: #008000">Customs Manual Chatbot</span></h1>
      <img src='logo.png' alt="Chatbot" width="50" height="50" />
    </div>
    """, elem_id="heading")

    # Formatted description
    gr.HTML(value="""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by National Customs   		Targeting Center  using Open source LLMs.(Dedicated to 75th Batch IRS Probationers)</p>""", elem_id="description")
    
    chatbot = gr.Chatbot(
      [],
      elem_id="chatbot",
      avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                      'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
      bubble_full_width=False,
      show_copy_button=True,
      show_share_button=True,
      )

    with gr.Row():
        txt = gr.Textbox(
                scale=3,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
                )
        txt_btn = gr.Button(value="Submit text", scale=1)

    api_kind = gr.Radio(choices=["HuggingFace"], value="HuggingFace")

    prompt_html = gr.HTML()
    try:
        # Turn off interactivity while generating if you click
        txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
                bot, [chatbot, api_kind], [chatbot, prompt_html])
    except Exception as e:
        print ('Exception  txt btn click ' ,str(e))
    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
    try:
        # Turn off interactivity while generating if you hit enter
        txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
                bot, [chatbot, api_kind], [chatbot, prompt_html])
    except Exception as e:
        print ('Exception  ' ,str(e))

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Examples
    gr.Examples(examples, txt)

demo.queue()
demo.launch(debug=True)