File size: 12,467 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input readers and document/token generators for datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import namedtuple
import csv
import os
import random

# Dependency imports

import tensorflow as tf

from data import data_utils

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('dataset', '', 'Which dataset to generate data for')

# Preprocessing config
flags.DEFINE_boolean('output_unigrams', True, 'Whether to output unigrams.')
flags.DEFINE_boolean('output_bigrams', False, 'Whether to output bigrams.')
flags.DEFINE_boolean('output_char', False, 'Whether to output characters.')
flags.DEFINE_boolean('lowercase', True, 'Whether to lowercase document terms.')

# IMDB
flags.DEFINE_string('imdb_input_dir', '', 'The input directory containing the '
                    'IMDB sentiment dataset.')
flags.DEFINE_integer('imdb_validation_pos_start_id', 10621, 'File id of the '
                     'first file in the pos sentiment validation set.')
flags.DEFINE_integer('imdb_validation_neg_start_id', 10625, 'File id of the '
                     'first file in the neg sentiment validation set.')

# DBpedia
flags.DEFINE_string('dbpedia_input_dir', '',
                    'Path to DBpedia directory containing train.csv and '
                    'test.csv.')

# Reuters Corpus (rcv1)
flags.DEFINE_string('rcv1_input_dir', '',
                    'Path to rcv1 directory containing train.csv, unlab.csv, '
                    'and test.csv.')

# Rotten Tomatoes
flags.DEFINE_string('rt_input_dir', '',
                    'The Rotten Tomatoes dataset input directory.')

# The amazon reviews input file to use in either the RT or IMDB datasets.
flags.DEFINE_string('amazon_unlabeled_input_file', '',
                    'The unlabeled Amazon Reviews dataset input file. If set, '
                    'the input file is used to augment RT and IMDB vocab.')

Document = namedtuple('Document',
                      'content is_validation is_test label add_tokens')


def documents(dataset='train',
              include_unlabeled=False,
              include_validation=False):
  """Generates Documents based on FLAGS.dataset.

  Args:
    dataset: str, identifies folder within IMDB data directory, test or train.
    include_unlabeled: bool, whether to include the unsup directory. Only valid
      when dataset=train.
    include_validation: bool, whether to include validation data.

  Yields:
    Document

  Raises:
    ValueError: if include_unlabeled is true but dataset is not 'train'
  """

  if include_unlabeled and dataset != 'train':
    raise ValueError('If include_unlabeled=True, must use train dataset')

  # Set the random seed so that we have the same validation set when running
  # gen_data and gen_vocab.
  random.seed(302)

  ds = FLAGS.dataset
  if ds == 'imdb':
    docs_gen = imdb_documents
  elif ds == 'dbpedia':
    docs_gen = dbpedia_documents
  elif ds == 'rcv1':
    docs_gen = rcv1_documents
  elif ds == 'rt':
    docs_gen = rt_documents
  else:
    raise ValueError('Unrecognized dataset %s' % FLAGS.dataset)

  for doc in docs_gen(dataset, include_unlabeled, include_validation):
    yield doc


def tokens(doc):
  """Given a Document, produces character or word tokens.

  Tokens can be either characters, or word-level tokens (unigrams and/or
  bigrams).

  Args:
    doc: Document to produce tokens from.

  Yields:
    token

  Raises:
    ValueError: if all FLAGS.{output_unigrams, output_bigrams, output_char}
      are False.
  """
  if not (FLAGS.output_unigrams or FLAGS.output_bigrams or FLAGS.output_char):
    raise ValueError(
        'At least one of {FLAGS.output_unigrams, FLAGS.output_bigrams, '
        'FLAGS.output_char} must be true')

  content = doc.content.strip()
  if FLAGS.lowercase:
    content = content.lower()

  if FLAGS.output_char:
    for char in content:
      yield char

  else:
    tokens_ = data_utils.split_by_punct(content)
    for i, token in enumerate(tokens_):
      if FLAGS.output_unigrams:
        yield token

      if FLAGS.output_bigrams:
        previous_token = (tokens_[i - 1] if i > 0 else data_utils.EOS_TOKEN)
        bigram = '_'.join([previous_token, token])
        yield bigram
        if (i + 1) == len(tokens_):
          bigram = '_'.join([token, data_utils.EOS_TOKEN])
          yield bigram


def imdb_documents(dataset='train',
                   include_unlabeled=False,
                   include_validation=False):
  """Generates Documents for IMDB dataset.

  Data from http://ai.stanford.edu/~amaas/data/sentiment/

  Args:
    dataset: str, identifies folder within IMDB data directory, test or train.
    include_unlabeled: bool, whether to include the unsup directory. Only valid
      when dataset=train.
    include_validation: bool, whether to include validation data.

  Yields:
    Document

  Raises:
    ValueError: if FLAGS.imdb_input_dir is empty.
  """
  if not FLAGS.imdb_input_dir:
    raise ValueError('Must provide FLAGS.imdb_input_dir')

  tf.logging.info('Generating IMDB documents...')

  def check_is_validation(filename, class_label):
    if class_label is None:
      return False
    file_idx = int(filename.split('_')[0])
    is_pos_valid = (class_label and
                    file_idx >= FLAGS.imdb_validation_pos_start_id)
    is_neg_valid = (not class_label and
                    file_idx >= FLAGS.imdb_validation_neg_start_id)
    return is_pos_valid or is_neg_valid

  dirs = [(dataset + '/pos', True), (dataset + '/neg', False)]
  if include_unlabeled:
    dirs.append(('train/unsup', None))

  for d, class_label in dirs:
    for filename in os.listdir(os.path.join(FLAGS.imdb_input_dir, d)):
      is_validation = check_is_validation(filename, class_label)
      if is_validation and not include_validation:
        continue

      with open(os.path.join(FLAGS.imdb_input_dir, d, filename), encoding='utf-8') as imdb_f:
        content = imdb_f.read()
      yield Document(
          content=content,
          is_validation=is_validation,
          is_test=False,
          label=class_label,
          add_tokens=True)

  if FLAGS.amazon_unlabeled_input_file and include_unlabeled:
    with open(FLAGS.amazon_unlabeled_input_file, encoding='utf-8') as rt_f:
      for content in rt_f:
        yield Document(
            content=content,
            is_validation=False,
            is_test=False,
            label=None,
            add_tokens=False)


def dbpedia_documents(dataset='train',
                      include_unlabeled=False,
                      include_validation=False):
  """Generates Documents for DBpedia dataset.

  Dataset linked to at https://github.com/zhangxiangxiao/Crepe.

  Args:
    dataset: str, identifies the csv file within the DBpedia data directory,
      test or train.
    include_unlabeled: bool, unused.
    include_validation: bool, whether to include validation data, which is a
      randomly selected 10% of the data.

  Yields:
    Document

  Raises:
    ValueError: if FLAGS.dbpedia_input_dir is empty.
  """
  del include_unlabeled

  if not FLAGS.dbpedia_input_dir:
    raise ValueError('Must provide FLAGS.dbpedia_input_dir')

  tf.logging.info('Generating DBpedia documents...')

  with open(os.path.join(FLAGS.dbpedia_input_dir, dataset + '.csv')) as db_f:
    reader = csv.reader(db_f)
    for row in reader:
      # 10% of the data is randomly held out
      is_validation = random.randint(1, 10) == 1
      if is_validation and not include_validation:
        continue

      content = row[1] + ' ' + row[2]
      yield Document(
          content=content,
          is_validation=is_validation,
          is_test=False,
          label=int(row[0]) - 1,  # Labels should start from 0
          add_tokens=True)


def rcv1_documents(dataset='train',
                   include_unlabeled=True,
                   include_validation=False):
  # pylint:disable=line-too-long
  """Generates Documents for Reuters Corpus (rcv1) dataset.

  Dataset described at
  http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

  Args:
    dataset: str, identifies the csv file within the rcv1 data directory.
    include_unlabeled: bool, whether to include the unlab file. Only valid
      when dataset=train.
    include_validation: bool, whether to include validation data, which is a
      randomly selected 10% of the data.

  Yields:
    Document

  Raises:
    ValueError: if FLAGS.rcv1_input_dir is empty.
  """
  # pylint:enable=line-too-long

  if not FLAGS.rcv1_input_dir:
    raise ValueError('Must provide FLAGS.rcv1_input_dir')

  tf.logging.info('Generating rcv1 documents...')

  datasets = [dataset]
  if include_unlabeled:
    if dataset == 'train':
      datasets.append('unlab')
  for dset in datasets:
    with open(os.path.join(FLAGS.rcv1_input_dir, dset + '.csv')) as db_f:
      reader = csv.reader(db_f)
      for row in reader:
        # 10% of the data is randomly held out
        is_validation = random.randint(1, 10) == 1
        if is_validation and not include_validation:
          continue

        content = row[1]
        yield Document(
            content=content,
            is_validation=is_validation,
            is_test=False,
            label=int(row[0]),
            add_tokens=True)


def rt_documents(dataset='train',
                 include_unlabeled=True,
                 include_validation=False):
  # pylint:disable=line-too-long
  """Generates Documents for the Rotten Tomatoes dataset.

  Dataset available at http://www.cs.cornell.edu/people/pabo/movie-review-data/
  In this dataset, amazon reviews are used for the unlabeled data.

  Args:
    dataset: str, identifies the data subdirectory.
    include_unlabeled: bool, whether to include the unlabeled data. Only valid
      when dataset=train.
    include_validation: bool, whether to include validation data, which is a
      randomly selected 10% of the data.

  Yields:
    Document

  Raises:
    ValueError: if FLAGS.rt_input_dir is empty.
  """
  # pylint:enable=line-too-long

  if not FLAGS.rt_input_dir:
    raise ValueError('Must provide FLAGS.rt_input_dir')

  tf.logging.info('Generating rt documents...')

  data_files = []
  input_filenames = os.listdir(FLAGS.rt_input_dir)
  for inp_fname in input_filenames:
    if inp_fname.endswith('.pos'):
      data_files.append((os.path.join(FLAGS.rt_input_dir, inp_fname), True))
    elif inp_fname.endswith('.neg'):
      data_files.append((os.path.join(FLAGS.rt_input_dir, inp_fname), False))
  if include_unlabeled and FLAGS.amazon_unlabeled_input_file:
    data_files.append((FLAGS.amazon_unlabeled_input_file, None))

  for filename, class_label in data_files:
    with open(filename) as rt_f:
      for content in rt_f:
        if class_label is None:
          # Process Amazon Review data for unlabeled dataset
          if content.startswith('review/text'):
            yield Document(
                content=content,
                is_validation=False,
                is_test=False,
                label=None,
                add_tokens=False)
        else:
          # 10% of the data is randomly held out for the validation set and
          # another 10% of it is randomly held out for the test set
          random_int = random.randint(1, 10)
          is_validation = random_int == 1
          is_test = random_int == 2
          if (is_test and dataset != 'test') or (is_validation and
                                                 not include_validation):
            continue

          yield Document(
              content=content,
              is_validation=is_validation,
              is_test=is_test,
              label=class_label,
              add_tokens=True)