File size: 5,185 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import os
import demo_inference
import tensorflow as tf
from tensorflow.python.training import monitored_session

_CHECKPOINT = 'model.ckpt-399731'
_CHECKPOINT_URL = 'http://download.tensorflow.org/models/attention_ocr_2017_08_09.tar.gz'


class DemoInferenceTest(tf.test.TestCase):
  def setUp(self):
    super(DemoInferenceTest, self).setUp()
    for suffix in ['.meta', '.index', '.data-00000-of-00001']:
      filename = _CHECKPOINT + suffix
      self.assertTrue(tf.gfile.Exists(filename),
                      msg='Missing checkpoint file %s. '
                          'Please download and extract it from %s' %
                          (filename, _CHECKPOINT_URL))
    self._batch_size = 32
    tf.flags.FLAGS.dataset_dir = os.path.join(os.path.dirname(__file__), 'datasets/testdata/fsns')

  def test_moving_variables_properly_loaded_from_a_checkpoint(self):
    batch_size = 32
    dataset_name = 'fsns'
    images_placeholder, endpoints = demo_inference.create_model(batch_size,
                                                                dataset_name)
    image_path_pattern = 'testdata/fsns_train_%02d.png'
    images_data = demo_inference.load_images(image_path_pattern, batch_size,
                                             dataset_name)
    tensor_name = 'AttentionOcr_v1/conv_tower_fn/INCE/InceptionV3/Conv2d_2a_3x3/BatchNorm/moving_mean'
    moving_mean_tf = tf.get_default_graph().get_tensor_by_name(
      tensor_name + ':0')
    reader = tf.train.NewCheckpointReader(_CHECKPOINT)
    moving_mean_expected = reader.get_tensor(tensor_name)

    session_creator = monitored_session.ChiefSessionCreator(
      checkpoint_filename_with_path=_CHECKPOINT)
    with monitored_session.MonitoredSession(
        session_creator=session_creator) as sess:
      moving_mean_np = sess.run(moving_mean_tf,
                                feed_dict={images_placeholder: images_data})

    self.assertAllEqual(moving_mean_expected, moving_mean_np)

  def test_correct_results_on_test_data(self):
    image_path_pattern = 'testdata/fsns_train_%02d.png'
    predictions = demo_inference.run(_CHECKPOINT, self._batch_size,
                                     'fsns',
                                     image_path_pattern)
    self.assertEqual([
      u'Boulevard de Lunelβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de Provenceβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de Port Mariaβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Avenue Charles Gounodβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de lβ€˜Auroreβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de Beuzevilleβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue dβ€˜Orbeyβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue Victor Schoulcherβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de la Gareβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue des Tulipesβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue AndrΓ© Maginotβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Route de Pringyβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue des Landellesβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue des Ilettesβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Avenue de Maurinβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue ThΓ©resaβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',  # GT='Rue ThΓ©rΓ©sa'
      'Route de la Balmeβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue Hélène Roederer░░░░░░░░░░░░░░░░░░',
      'Rue Emile Bernardβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Place de la Mairieβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue des Perrotsβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de la LibΓ©rationβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Impasse du Capcirβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Avenue de la Grand Mareβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue Pierre Brossoletteβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue de Provenceβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue du Docteur Mourreβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue dβ€˜Ortheuilβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue des Sarmentsβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue du Centreβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Impasse Pierre Mourguesβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘',
      'Rue Marcel Dassaultβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘'
    ], predictions)


if __name__ == '__main__':
  tf.test.main()