File size: 3,581 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Quality metrics for the model."""

import tensorflow as tf


def char_accuracy(predictions, targets, rej_char, streaming=False):
  """Computes character level accuracy.

  Both predictions and targets should have the same shape
  [batch_size x seq_length].

  Args:
    predictions: predicted characters ids.
    targets: ground truth character ids.
    rej_char: the character id used to mark an empty element (end of sequence).
    streaming: if True, uses the streaming mean from the slim.metric module.

  Returns:
    a update_ops for execution and value tensor whose value on evaluation
    returns the total character accuracy.
  """
  with tf.variable_scope('CharAccuracy'):
    predictions.get_shape().assert_is_compatible_with(targets.get_shape())

    targets = tf.to_int32(targets)
    const_rej_char = tf.constant(rej_char, shape=targets.get_shape())
    weights = tf.to_float(tf.not_equal(targets, const_rej_char))
    correct_chars = tf.to_float(tf.equal(predictions, targets))
    accuracy_per_example = tf.div(
        tf.reduce_sum(tf.multiply(correct_chars, weights), 1),
        tf.reduce_sum(weights, 1))
    if streaming:
      return tf.contrib.metrics.streaming_mean(accuracy_per_example)
    else:
      return tf.reduce_mean(accuracy_per_example)


def sequence_accuracy(predictions, targets, rej_char, streaming=False):
  """Computes sequence level accuracy.

  Both input tensors should have the same shape: [batch_size x seq_length].

  Args:
    predictions: predicted character classes.
    targets: ground truth character classes.
    rej_char: the character id used to mark empty element (end of sequence).
    streaming: if True, uses the streaming mean from the slim.metric module.

  Returns:
    a update_ops for execution and value tensor whose value on evaluation
    returns the total sequence accuracy.
  """

  with tf.variable_scope('SequenceAccuracy'):
    predictions.get_shape().assert_is_compatible_with(targets.get_shape())

    targets = tf.to_int32(targets)
    const_rej_char = tf.constant(
        rej_char, shape=targets.get_shape(), dtype=tf.int32)
    include_mask = tf.not_equal(targets, const_rej_char)
    include_predictions = tf.to_int32(
        tf.where(include_mask, predictions,
                 tf.zeros_like(predictions) + rej_char))
    correct_chars = tf.to_float(tf.equal(include_predictions, targets))
    correct_chars_counts = tf.cast(
        tf.reduce_sum(correct_chars, reduction_indices=[1]), dtype=tf.int32)
    target_length = targets.get_shape().dims[1].value
    target_chars_counts = tf.constant(
        target_length, shape=correct_chars_counts.get_shape())
    accuracy_per_example = tf.to_float(
        tf.equal(correct_chars_counts, target_chars_counts))
    if streaming:
      return tf.contrib.metrics.streaming_mean(accuracy_per_example)
    else:
      return tf.reduce_mean(accuracy_per_example)