File size: 7,328 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Script to train the Attention OCR model.

A simple usage example:
python train.py
"""
import collections
import logging
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow import app
from tensorflow.python.platform import flags
from tensorflow.contrib.tfprof import model_analyzer

import data_provider
import common_flags

FLAGS = flags.FLAGS
common_flags.define()

# yapf: disable
flags.DEFINE_integer('task', 0,
                     'The Task ID. This value is used when training with '
                     'multiple workers to identify each worker.')

flags.DEFINE_integer('ps_tasks', 0,
                     'The number of parameter servers. If the value is 0, then'
                     ' the parameters are handled locally by the worker.')

flags.DEFINE_integer('save_summaries_secs', 60,
                     'The frequency with which summaries are saved, in '
                     'seconds.')

flags.DEFINE_integer('save_interval_secs', 600,
                     'Frequency in seconds of saving the model.')

flags.DEFINE_integer('max_number_of_steps', int(1e10),
                     'The maximum number of gradient steps.')

flags.DEFINE_string('checkpoint_inception', '',
                    'Checkpoint to recover inception weights from.')

flags.DEFINE_float('clip_gradient_norm', 2.0,
                   'If greater than 0 then the gradients would be clipped by '
                   'it.')

flags.DEFINE_bool('sync_replicas', False,
                  'If True will synchronize replicas during training.')

flags.DEFINE_integer('replicas_to_aggregate', 1,
                     'The number of gradients updates before updating params.')

flags.DEFINE_integer('total_num_replicas', 1,
                     'Total number of worker replicas.')

flags.DEFINE_integer('startup_delay_steps', 15,
                     'Number of training steps between replicas startup.')

flags.DEFINE_boolean('reset_train_dir', False,
                     'If true will delete all files in the train_log_dir')

flags.DEFINE_boolean('show_graph_stats', False,
                     'Output model size stats to stderr.')
# yapf: enable

TrainingHParams = collections.namedtuple('TrainingHParams', [
    'learning_rate',
    'optimizer',
    'momentum',
    'use_augment_input',
])


def get_training_hparams():
  return TrainingHParams(
      learning_rate=FLAGS.learning_rate,
      optimizer=FLAGS.optimizer,
      momentum=FLAGS.momentum,
      use_augment_input=FLAGS.use_augment_input)


def create_optimizer(hparams):
  """Creates optimized based on the specified flags."""
  if hparams.optimizer == 'momentum':
    optimizer = tf.train.MomentumOptimizer(
        hparams.learning_rate, momentum=hparams.momentum)
  elif hparams.optimizer == 'adam':
    optimizer = tf.train.AdamOptimizer(hparams.learning_rate)
  elif hparams.optimizer == 'adadelta':
    optimizer = tf.train.AdadeltaOptimizer(hparams.learning_rate)
  elif hparams.optimizer == 'adagrad':
    optimizer = tf.train.AdagradOptimizer(hparams.learning_rate)
  elif hparams.optimizer == 'rmsprop':
    optimizer = tf.train.RMSPropOptimizer(
        hparams.learning_rate, momentum=hparams.momentum)
  return optimizer


def train(loss, init_fn, hparams):
  """Wraps slim.learning.train to run a training loop.

  Args:
    loss: a loss tensor
    init_fn: A callable to be executed after all other initialization is done.
    hparams: a model hyper parameters
  """
  optimizer = create_optimizer(hparams)

  if FLAGS.sync_replicas:
    replica_id = tf.constant(FLAGS.task, tf.int32, shape=())
    optimizer = tf.LegacySyncReplicasOptimizer(
        opt=optimizer,
        replicas_to_aggregate=FLAGS.replicas_to_aggregate,
        replica_id=replica_id,
        total_num_replicas=FLAGS.total_num_replicas)
    sync_optimizer = optimizer
    startup_delay_steps = 0
  else:
    startup_delay_steps = 0
    sync_optimizer = None

  train_op = slim.learning.create_train_op(
      loss,
      optimizer,
      summarize_gradients=True,
      clip_gradient_norm=FLAGS.clip_gradient_norm)

  slim.learning.train(
      train_op=train_op,
      logdir=FLAGS.train_log_dir,
      graph=loss.graph,
      master=FLAGS.master,
      is_chief=(FLAGS.task == 0),
      number_of_steps=FLAGS.max_number_of_steps,
      save_summaries_secs=FLAGS.save_summaries_secs,
      save_interval_secs=FLAGS.save_interval_secs,
      startup_delay_steps=startup_delay_steps,
      sync_optimizer=sync_optimizer,
      init_fn=init_fn)


def prepare_training_dir():
  if not tf.gfile.Exists(FLAGS.train_log_dir):
    logging.info('Create a new training directory %s', FLAGS.train_log_dir)
    tf.gfile.MakeDirs(FLAGS.train_log_dir)
  else:
    if FLAGS.reset_train_dir:
      logging.info('Reset the training directory %s', FLAGS.train_log_dir)
      tf.gfile.DeleteRecursively(FLAGS.train_log_dir)
      tf.gfile.MakeDirs(FLAGS.train_log_dir)
    else:
      logging.info('Use already existing training directory %s',
                   FLAGS.train_log_dir)


def calculate_graph_metrics():
  param_stats = model_analyzer.print_model_analysis(
      tf.get_default_graph(),
      tfprof_options=model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
  return param_stats.total_parameters


def main(_):
  prepare_training_dir()

  dataset = common_flags.create_dataset(split_name=FLAGS.split_name)
  model = common_flags.create_model(dataset.num_char_classes,
                                    dataset.max_sequence_length,
                                    dataset.num_of_views, dataset.null_code)
  hparams = get_training_hparams()

  # If ps_tasks is zero, the local device is used. When using multiple
  # (non-local) replicas, the ReplicaDeviceSetter distributes the variables
  # across the different devices.
  device_setter = tf.train.replica_device_setter(
      FLAGS.ps_tasks, merge_devices=True)
  with tf.device(device_setter):
    data = data_provider.get_data(
        dataset,
        FLAGS.batch_size,
        augment=hparams.use_augment_input,
        central_crop_size=common_flags.get_crop_size())
    endpoints = model.create_base(data.images, data.labels_one_hot)
    total_loss = model.create_loss(data, endpoints)
    model.create_summaries(data, endpoints, dataset.charset, is_training=True)
    init_fn = model.create_init_fn_to_restore(FLAGS.checkpoint,
                                              FLAGS.checkpoint_inception)
    if FLAGS.show_graph_stats:
      logging.info('Total number of weights in the graph: %s',
                   calculate_graph_metrics())
    train(total_loss, init_fn, hparams)


if __name__ == '__main__':
  app.run()