Spaces:
Running
Running
File size: 5,183 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
![No Maintenance Intended](https://img.shields.io/badge/No%20Maintenance%20Intended-%E2%9C%95-red.svg)
![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen)
![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg)
# Cognitive Mapping and Planning for Visual Navigation
**Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik**
**Computer Vision and Pattern Recognition (CVPR) 2017.**
**[ArXiv](https://arxiv.org/abs/1702.03920),
[Project Website](https://sites.google.com/corp/view/cognitive-mapping-and-planning/)**
### Citing
If you find this code base and models useful in your research, please consider
citing the following paper:
```
@inproceedings{gupta2017cognitive,
title={Cognitive Mapping and Planning for Visual Navigation},
author={Gupta, Saurabh and Davidson, James and Levine, Sergey and
Sukthankar, Rahul and Malik, Jitendra},
booktitle={CVPR},
year={2017}
}
```
### Contents
1. [Requirements: software](#requirements-software)
2. [Requirements: data](#requirements-data)
3. [Test Pre-trained Models](#test-pre-trained-models)
4. [Train your Own Models](#train-your-own-models)
### Requirements: software
1. Python Virtual Env Setup: All code is implemented in Python but depends on a
small number of python packages and a couple of C libraries. We recommend
using virtual environment for installing these python packages and python
bindings for these C libraries.
```Shell
VENV_DIR=venv
pip install virtualenv
virtualenv $VENV_DIR
source $VENV_DIR/bin/activate
# You may need to upgrade pip for installing openv-python.
pip install --upgrade pip
# Install simple dependencies.
pip install -r requirements.txt
# Patch bugs in dependencies.
sh patches/apply_patches.sh
```
2. Install [Tensorflow](https://www.tensorflow.org/) inside this virtual
environment. You will need to use one of the latest nightly builds
(see instructions [here](https://github.com/tensorflow/tensorflow#installation)).
3. Swiftshader: We use
[Swiftshader](https://github.com/google/swiftshader.git), a CPU based
renderer to render the meshes. It is possible to use other renderers,
replace `SwiftshaderRenderer` in `render/swiftshader_renderer.py` with
bindings to your renderer.
```Shell
mkdir -p deps
git clone --recursive https://github.com/google/swiftshader.git deps/swiftshader-src
cd deps/swiftshader-src && git checkout 91da6b00584afd7dcaed66da88e2b617429b3950
git submodule update
mkdir build && cd build && cmake .. && make -j 16 libEGL libGLESv2
cd ../../../
cp deps/swiftshader-src/build/libEGL* libEGL.so.1
cp deps/swiftshader-src/build/libGLESv2* libGLESv2.so.2
```
4. PyAssimp: We use [PyAssimp](https://github.com/assimp/assimp.git) to load
meshes. It is possible to use other libraries to load meshes, replace
`Shape` `render/swiftshader_renderer.py` with bindings to your library for
loading meshes.
```Shell
mkdir -p deps
git clone https://github.com/assimp/assimp.git deps/assimp-src
cd deps/assimp-src
git checkout 2afeddd5cb63d14bc77b53740b38a54a97d94ee8
cmake CMakeLists.txt -G 'Unix Makefiles' && make -j 16
cd port/PyAssimp && python setup.py install
cd ../../../..
cp deps/assimp-src/lib/libassimp* .
```
5. graph-tool: We use [graph-tool](https://git.skewed.de/count0/graph-tool)
library for graph processing.
```Shell
mkdir -p deps
# If the following git clone command fails, you can also download the source
# from https://downloads.skewed.de/graph-tool/graph-tool-2.2.44.tar.bz2
git clone https://git.skewed.de/count0/graph-tool deps/graph-tool-src
cd deps/graph-tool-src && git checkout 178add3a571feb6666f4f119027705d95d2951ab
bash autogen.sh
./configure --disable-cairo --disable-sparsehash --prefix=$HOME/.local
make -j 16
make install
cd ../../
```
### Requirements: data
1. Download the Stanford 3D Indoor Spaces Dataset (S3DIS Dataset) and ImageNet
Pre-trained models for initializing different models. Follow instructions in
`data/README.md`
### Test Pre-trained Models
1. Download pre-trained models. See `output/README.md`.
2. Test models using `scripts/script_test_pretrained_models.sh`.
### Train Your Own Models
All models were trained asynchronously with 16 workers each worker using data
from a single floor. The default hyper-parameters correspond to this setting.
See [distributed training with
Tensorflow](https://www.tensorflow.org/deploy/distributed) for setting up
distributed training. Training with a single worker is possible with the current
code base but will require some minor changes to allow each worker to load all
training environments.
### Contact
For questions or issues open an issue on the tensorflow/models [issues
tracker](https://github.com/tensorflow/models/issues). Please assign issues to
@s-gupta.
### Credits
This code was written by Saurabh Gupta (@s-gupta).
|