File size: 9,658 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import os
import numpy as np
import logging
import src.utils as utils
import datasets.nav_env_config as nec
from datasets import factory

def adjust_args_for_mode(args, mode):
  if mode == 'train':
    args.control.train = True
  
  elif mode == 'val1':
    # Same settings as for training, to make sure nothing wonky is happening
    # there.
    args.control.test = True
    args.control.test_mode = 'val'
    args.navtask.task_params.batch_size = 32

  elif mode == 'val2':
    # No data augmentation, not sampling but taking the argmax action, not
    # sampling from the ground truth at all.
    args.control.test = True
    args.arch.action_sample_type = 'argmax'
    args.arch.sample_gt_prob_type = 'zero'
    args.navtask.task_params.data_augment = \
      utils.Foo(lr_flip=0, delta_angle=0, delta_xy=0, relight=False,
                relight_fast=False, structured=False)
    args.control.test_mode = 'val'
    args.navtask.task_params.batch_size = 32

  elif mode == 'bench':
    # Actually testing the agent in settings that are kept same between
    # different runs.
    args.navtask.task_params.batch_size = 16
    args.control.test = True
    args.arch.action_sample_type = 'argmax'
    args.arch.sample_gt_prob_type = 'zero'
    args.navtask.task_params.data_augment = \
      utils.Foo(lr_flip=0, delta_angle=0, delta_xy=0, relight=False,
                relight_fast=False, structured=False)
    args.summary.test_iters = 250
    args.control.only_eval_when_done = True
    args.control.reset_rng_seed = True
    args.control.test_mode = 'test'
  else:
    logging.fatal('Unknown mode: %s.', mode)
    assert(False)
  return args

def get_solver_vars(solver_str):
  if solver_str == '': vals = []; 
  else: vals = solver_str.split('_')
  ks = ['clip', 'dlw', 'long', 'typ', 'isdk', 'adam_eps', 'init_lr'];
  ks = ks[:len(vals)]

  # Gradient clipping or not.
  if len(vals) == 0: ks.append('clip'); vals.append('noclip');
  # data loss weight.
  if len(vals) == 1: ks.append('dlw');  vals.append('dlw20')
  # how long to train for.
  if len(vals) == 2: ks.append('long');  vals.append('nolong')
  # Adam
  if len(vals) == 3: ks.append('typ');  vals.append('adam2')
  # reg loss wt
  if len(vals) == 4: ks.append('rlw');  vals.append('rlw1')
  # isd_k
  if len(vals) == 5: ks.append('isdk');  vals.append('isdk415') # 415, inflexion at 2.5k.
  # adam eps
  if len(vals) == 6: ks.append('adam_eps');  vals.append('aeps1en8')
  # init lr
  if len(vals) == 7: ks.append('init_lr');  vals.append('lr1en3')

  assert(len(vals) == 8)
  
  vars = utils.Foo()
  for k, v in zip(ks, vals):
    setattr(vars, k, v)
  logging.error('solver_vars: %s', vars)
  return vars

def process_solver_str(solver_str):
  solver = utils.Foo(
      seed=0, learning_rate_decay=None, clip_gradient_norm=None, max_steps=None,
      initial_learning_rate=None, momentum=None, steps_per_decay=None,
      logdir=None, sync=False, adjust_lr_sync=True, wt_decay=0.0001,
      data_loss_wt=None, reg_loss_wt=None, freeze_conv=True, num_workers=1,
      task=0, ps_tasks=0, master='local', typ=None, momentum2=None,
      adam_eps=None)

  # Clobber with overrides from solver str.
  solver_vars = get_solver_vars(solver_str)

  solver.data_loss_wt          = float(solver_vars.dlw[3:].replace('x', '.'))
  solver.adam_eps              = float(solver_vars.adam_eps[4:].replace('x', '.').replace('n', '-'))
  solver.initial_learning_rate = float(solver_vars.init_lr[2:].replace('x', '.').replace('n', '-'))
  solver.reg_loss_wt           = float(solver_vars.rlw[3:].replace('x', '.'))
  solver.isd_k                 = float(solver_vars.isdk[4:].replace('x', '.'))

  long = solver_vars.long
  if long == 'long':
    solver.steps_per_decay = 40000
    solver.max_steps = 120000
  elif long == 'long2':
    solver.steps_per_decay = 80000
    solver.max_steps = 120000
  elif long == 'nolong' or long == 'nol':
    solver.steps_per_decay = 20000
    solver.max_steps = 60000
  else:
    logging.fatal('solver_vars.long should be long, long2, nolong or nol.')
    assert(False)

  clip = solver_vars.clip
  if clip == 'noclip' or clip == 'nocl':
    solver.clip_gradient_norm = 0
  elif clip[:4] == 'clip':
    solver.clip_gradient_norm = float(clip[4:].replace('x', '.'))
  else:
    logging.fatal('Unknown solver_vars.clip: %s', clip)
    assert(False)

  typ = solver_vars.typ
  if typ == 'adam':
    solver.typ = 'adam'
    solver.momentum = 0.9
    solver.momentum2 = 0.999
    solver.learning_rate_decay = 1.0
  elif typ == 'adam2':
    solver.typ = 'adam'
    solver.momentum = 0.9
    solver.momentum2 = 0.999
    solver.learning_rate_decay = 0.1
  elif typ == 'sgd':
    solver.typ = 'sgd'
    solver.momentum = 0.99
    solver.momentum2 = None
    solver.learning_rate_decay = 0.1
  else:
    logging.fatal('Unknown solver_vars.typ: %s', typ)
    assert(False)

  logging.error('solver: %s', solver)
  return solver

def get_navtask_vars(navtask_str):
  if navtask_str == '': vals = []
  else: vals = navtask_str.split('_')

  ks_all = ['dataset_name', 'modality', 'task', 'history', 'max_dist',
            'num_steps', 'step_size', 'n_ori', 'aux_views', 'data_aug']
  ks = ks_all[:len(vals)]

  # All data or not.
  if len(vals) == 0: ks.append('dataset_name'); vals.append('sbpd')
  # modality
  if len(vals) == 1: ks.append('modality'); vals.append('rgb')
  # semantic task?
  if len(vals) == 2: ks.append('task'); vals.append('r2r')
  # number of history frames.
  if len(vals) == 3: ks.append('history'); vals.append('h0')
  # max steps
  if len(vals) == 4: ks.append('max_dist'); vals.append('32')
  # num steps
  if len(vals) == 5: ks.append('num_steps'); vals.append('40')
  # step size
  if len(vals) == 6: ks.append('step_size'); vals.append('8')
  # n_ori
  if len(vals) == 7: ks.append('n_ori'); vals.append('4')
  # Auxiliary views.
  if len(vals) == 8: ks.append('aux_views'); vals.append('nv0')
  # Normal data augmentation as opposed to structured data augmentation (if set
  # to straug.
  if len(vals) == 9: ks.append('data_aug'); vals.append('straug')

  assert(len(vals) == 10)
  for i in range(len(ks)):
    assert(ks[i] == ks_all[i])

  vars = utils.Foo()
  for k, v in zip(ks, vals):
    setattr(vars, k, v)
  logging.error('navtask_vars: %s', vals)
  return vars

def process_navtask_str(navtask_str):
  navtask = nec.nav_env_base_config()
  
  # Clobber with overrides from strings.
  navtask_vars = get_navtask_vars(navtask_str)

  navtask.task_params.n_ori = int(navtask_vars.n_ori)
  navtask.task_params.max_dist = int(navtask_vars.max_dist)
  navtask.task_params.num_steps = int(navtask_vars.num_steps)
  navtask.task_params.step_size = int(navtask_vars.step_size)
  navtask.task_params.data_augment.delta_xy = int(navtask_vars.step_size)/2.
  n_aux_views_each = int(navtask_vars.aux_views[2])
  aux_delta_thetas = np.concatenate((np.arange(n_aux_views_each) + 1,
                                     -1 -np.arange(n_aux_views_each)))
  aux_delta_thetas = aux_delta_thetas*np.deg2rad(navtask.camera_param.fov)
  navtask.task_params.aux_delta_thetas = aux_delta_thetas
  
  if navtask_vars.data_aug == 'aug':
    navtask.task_params.data_augment.structured = False
  elif navtask_vars.data_aug == 'straug':
    navtask.task_params.data_augment.structured = True
  else:
    logging.fatal('Unknown navtask_vars.data_aug %s.', navtask_vars.data_aug)
    assert(False)

  navtask.task_params.num_history_frames = int(navtask_vars.history[1:])
  navtask.task_params.n_views = 1+navtask.task_params.num_history_frames
  
  navtask.task_params.goal_channels = int(navtask_vars.n_ori)
  
  if navtask_vars.task == 'hard': 
    navtask.task_params.type = 'rng_rejection_sampling_many'
    navtask.task_params.rejection_sampling_M = 2000
    navtask.task_params.min_dist = 10
  elif navtask_vars.task == 'r2r':
    navtask.task_params.type = 'room_to_room_many'
  elif navtask_vars.task == 'ST':
    # Semantic task at hand.
    navtask.task_params.goal_channels = \
        len(navtask.task_params.semantic_task.class_map_names)
    navtask.task_params.rel_goal_loc_dim = \
        len(navtask.task_params.semantic_task.class_map_names)
    navtask.task_params.type = 'to_nearest_obj_acc'
  else:
    logging.fatal('navtask_vars.task: should be hard or r2r, ST')
    assert(False)
  
  if navtask_vars.modality == 'rgb':
    navtask.camera_param.modalities = ['rgb']
    navtask.camera_param.img_channels = 3
  elif navtask_vars.modality == 'd':
    navtask.camera_param.modalities = ['depth']
    navtask.camera_param.img_channels = 2
  
  navtask.task_params.img_height   = navtask.camera_param.height
  navtask.task_params.img_width    = navtask.camera_param.width
  navtask.task_params.modalities   = navtask.camera_param.modalities
  navtask.task_params.img_channels = navtask.camera_param.img_channels
  navtask.task_params.img_fov      = navtask.camera_param.fov
  
  navtask.dataset = factory.get_dataset(navtask_vars.dataset_name)
  return navtask