Spaces:
Running
Running
File size: 9,658 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import numpy as np
import logging
import src.utils as utils
import datasets.nav_env_config as nec
from datasets import factory
def adjust_args_for_mode(args, mode):
if mode == 'train':
args.control.train = True
elif mode == 'val1':
# Same settings as for training, to make sure nothing wonky is happening
# there.
args.control.test = True
args.control.test_mode = 'val'
args.navtask.task_params.batch_size = 32
elif mode == 'val2':
# No data augmentation, not sampling but taking the argmax action, not
# sampling from the ground truth at all.
args.control.test = True
args.arch.action_sample_type = 'argmax'
args.arch.sample_gt_prob_type = 'zero'
args.navtask.task_params.data_augment = \
utils.Foo(lr_flip=0, delta_angle=0, delta_xy=0, relight=False,
relight_fast=False, structured=False)
args.control.test_mode = 'val'
args.navtask.task_params.batch_size = 32
elif mode == 'bench':
# Actually testing the agent in settings that are kept same between
# different runs.
args.navtask.task_params.batch_size = 16
args.control.test = True
args.arch.action_sample_type = 'argmax'
args.arch.sample_gt_prob_type = 'zero'
args.navtask.task_params.data_augment = \
utils.Foo(lr_flip=0, delta_angle=0, delta_xy=0, relight=False,
relight_fast=False, structured=False)
args.summary.test_iters = 250
args.control.only_eval_when_done = True
args.control.reset_rng_seed = True
args.control.test_mode = 'test'
else:
logging.fatal('Unknown mode: %s.', mode)
assert(False)
return args
def get_solver_vars(solver_str):
if solver_str == '': vals = [];
else: vals = solver_str.split('_')
ks = ['clip', 'dlw', 'long', 'typ', 'isdk', 'adam_eps', 'init_lr'];
ks = ks[:len(vals)]
# Gradient clipping or not.
if len(vals) == 0: ks.append('clip'); vals.append('noclip');
# data loss weight.
if len(vals) == 1: ks.append('dlw'); vals.append('dlw20')
# how long to train for.
if len(vals) == 2: ks.append('long'); vals.append('nolong')
# Adam
if len(vals) == 3: ks.append('typ'); vals.append('adam2')
# reg loss wt
if len(vals) == 4: ks.append('rlw'); vals.append('rlw1')
# isd_k
if len(vals) == 5: ks.append('isdk'); vals.append('isdk415') # 415, inflexion at 2.5k.
# adam eps
if len(vals) == 6: ks.append('adam_eps'); vals.append('aeps1en8')
# init lr
if len(vals) == 7: ks.append('init_lr'); vals.append('lr1en3')
assert(len(vals) == 8)
vars = utils.Foo()
for k, v in zip(ks, vals):
setattr(vars, k, v)
logging.error('solver_vars: %s', vars)
return vars
def process_solver_str(solver_str):
solver = utils.Foo(
seed=0, learning_rate_decay=None, clip_gradient_norm=None, max_steps=None,
initial_learning_rate=None, momentum=None, steps_per_decay=None,
logdir=None, sync=False, adjust_lr_sync=True, wt_decay=0.0001,
data_loss_wt=None, reg_loss_wt=None, freeze_conv=True, num_workers=1,
task=0, ps_tasks=0, master='local', typ=None, momentum2=None,
adam_eps=None)
# Clobber with overrides from solver str.
solver_vars = get_solver_vars(solver_str)
solver.data_loss_wt = float(solver_vars.dlw[3:].replace('x', '.'))
solver.adam_eps = float(solver_vars.adam_eps[4:].replace('x', '.').replace('n', '-'))
solver.initial_learning_rate = float(solver_vars.init_lr[2:].replace('x', '.').replace('n', '-'))
solver.reg_loss_wt = float(solver_vars.rlw[3:].replace('x', '.'))
solver.isd_k = float(solver_vars.isdk[4:].replace('x', '.'))
long = solver_vars.long
if long == 'long':
solver.steps_per_decay = 40000
solver.max_steps = 120000
elif long == 'long2':
solver.steps_per_decay = 80000
solver.max_steps = 120000
elif long == 'nolong' or long == 'nol':
solver.steps_per_decay = 20000
solver.max_steps = 60000
else:
logging.fatal('solver_vars.long should be long, long2, nolong or nol.')
assert(False)
clip = solver_vars.clip
if clip == 'noclip' or clip == 'nocl':
solver.clip_gradient_norm = 0
elif clip[:4] == 'clip':
solver.clip_gradient_norm = float(clip[4:].replace('x', '.'))
else:
logging.fatal('Unknown solver_vars.clip: %s', clip)
assert(False)
typ = solver_vars.typ
if typ == 'adam':
solver.typ = 'adam'
solver.momentum = 0.9
solver.momentum2 = 0.999
solver.learning_rate_decay = 1.0
elif typ == 'adam2':
solver.typ = 'adam'
solver.momentum = 0.9
solver.momentum2 = 0.999
solver.learning_rate_decay = 0.1
elif typ == 'sgd':
solver.typ = 'sgd'
solver.momentum = 0.99
solver.momentum2 = None
solver.learning_rate_decay = 0.1
else:
logging.fatal('Unknown solver_vars.typ: %s', typ)
assert(False)
logging.error('solver: %s', solver)
return solver
def get_navtask_vars(navtask_str):
if navtask_str == '': vals = []
else: vals = navtask_str.split('_')
ks_all = ['dataset_name', 'modality', 'task', 'history', 'max_dist',
'num_steps', 'step_size', 'n_ori', 'aux_views', 'data_aug']
ks = ks_all[:len(vals)]
# All data or not.
if len(vals) == 0: ks.append('dataset_name'); vals.append('sbpd')
# modality
if len(vals) == 1: ks.append('modality'); vals.append('rgb')
# semantic task?
if len(vals) == 2: ks.append('task'); vals.append('r2r')
# number of history frames.
if len(vals) == 3: ks.append('history'); vals.append('h0')
# max steps
if len(vals) == 4: ks.append('max_dist'); vals.append('32')
# num steps
if len(vals) == 5: ks.append('num_steps'); vals.append('40')
# step size
if len(vals) == 6: ks.append('step_size'); vals.append('8')
# n_ori
if len(vals) == 7: ks.append('n_ori'); vals.append('4')
# Auxiliary views.
if len(vals) == 8: ks.append('aux_views'); vals.append('nv0')
# Normal data augmentation as opposed to structured data augmentation (if set
# to straug.
if len(vals) == 9: ks.append('data_aug'); vals.append('straug')
assert(len(vals) == 10)
for i in range(len(ks)):
assert(ks[i] == ks_all[i])
vars = utils.Foo()
for k, v in zip(ks, vals):
setattr(vars, k, v)
logging.error('navtask_vars: %s', vals)
return vars
def process_navtask_str(navtask_str):
navtask = nec.nav_env_base_config()
# Clobber with overrides from strings.
navtask_vars = get_navtask_vars(navtask_str)
navtask.task_params.n_ori = int(navtask_vars.n_ori)
navtask.task_params.max_dist = int(navtask_vars.max_dist)
navtask.task_params.num_steps = int(navtask_vars.num_steps)
navtask.task_params.step_size = int(navtask_vars.step_size)
navtask.task_params.data_augment.delta_xy = int(navtask_vars.step_size)/2.
n_aux_views_each = int(navtask_vars.aux_views[2])
aux_delta_thetas = np.concatenate((np.arange(n_aux_views_each) + 1,
-1 -np.arange(n_aux_views_each)))
aux_delta_thetas = aux_delta_thetas*np.deg2rad(navtask.camera_param.fov)
navtask.task_params.aux_delta_thetas = aux_delta_thetas
if navtask_vars.data_aug == 'aug':
navtask.task_params.data_augment.structured = False
elif navtask_vars.data_aug == 'straug':
navtask.task_params.data_augment.structured = True
else:
logging.fatal('Unknown navtask_vars.data_aug %s.', navtask_vars.data_aug)
assert(False)
navtask.task_params.num_history_frames = int(navtask_vars.history[1:])
navtask.task_params.n_views = 1+navtask.task_params.num_history_frames
navtask.task_params.goal_channels = int(navtask_vars.n_ori)
if navtask_vars.task == 'hard':
navtask.task_params.type = 'rng_rejection_sampling_many'
navtask.task_params.rejection_sampling_M = 2000
navtask.task_params.min_dist = 10
elif navtask_vars.task == 'r2r':
navtask.task_params.type = 'room_to_room_many'
elif navtask_vars.task == 'ST':
# Semantic task at hand.
navtask.task_params.goal_channels = \
len(navtask.task_params.semantic_task.class_map_names)
navtask.task_params.rel_goal_loc_dim = \
len(navtask.task_params.semantic_task.class_map_names)
navtask.task_params.type = 'to_nearest_obj_acc'
else:
logging.fatal('navtask_vars.task: should be hard or r2r, ST')
assert(False)
if navtask_vars.modality == 'rgb':
navtask.camera_param.modalities = ['rgb']
navtask.camera_param.img_channels = 3
elif navtask_vars.modality == 'd':
navtask.camera_param.modalities = ['depth']
navtask.camera_param.img_channels = 2
navtask.task_params.img_height = navtask.camera_param.height
navtask.task_params.img_width = navtask.camera_param.width
navtask.task_params.modalities = navtask.camera_param.modalities
navtask.task_params.img_channels = navtask.camera_param.img_channels
navtask.task_params.img_fov = navtask.camera_param.fov
navtask.dataset = factory.get_dataset(navtask_vars.dataset_name)
return navtask
|