File size: 63,918 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Navidation Environment. Includes the following classes along with some
helper functions.
  Building: Loads buildings, computes traversibility, exposes functionality for
    rendering images.
  
  GridWorld: Base class which implements functionality for moving an agent on a
    grid world.
  
  NavigationEnv: Base class which generates navigation problems on a grid world.
  
  VisualNavigationEnv: Builds upon NavigationEnv and Building to provide
    interface that is used externally to train the agent. 
  
  MeshMapper: Class used for distilling the model, testing the mapper.
  
  BuildingMultiplexer: Wrapper class that instantiates a VisualNavigationEnv for
    each building and multiplexes between them as needed.
"""

import numpy as np
import os
import re
import matplotlib.pyplot as plt

import graph_tool as gt
import graph_tool.topology

from tensorflow.python.platform import gfile
import logging
import src.file_utils as fu
import src.utils as utils
import src.graph_utils as gu
import src.map_utils as mu
import src.depth_utils as du
import render.swiftshader_renderer as sru
from render.swiftshader_renderer import SwiftshaderRenderer
import cv2

label_nodes_with_class           = gu.label_nodes_with_class
label_nodes_with_class_geodesic  = gu.label_nodes_with_class_geodesic
get_distance_node_list           = gu.get_distance_node_list
convert_to_graph_tool            = gu.convert_to_graph_tool
generate_graph                   = gu.generate_graph
get_hardness_distribution        = gu.get_hardness_distribution
rng_next_goal_rejection_sampling = gu.rng_next_goal_rejection_sampling
rng_next_goal                    = gu.rng_next_goal
rng_room_to_room                 = gu.rng_room_to_room
rng_target_dist_field            = gu.rng_target_dist_field

compute_traversibility           = mu.compute_traversibility
make_map                         = mu.make_map
resize_maps                      = mu.resize_maps
pick_largest_cc                  = mu.pick_largest_cc
get_graph_origin_loc             = mu.get_graph_origin_loc
generate_egocentric_maps         = mu.generate_egocentric_maps
generate_goal_images             = mu.generate_goal_images
get_map_to_predict               = mu.get_map_to_predict

bin_points                       = du.bin_points
make_geocentric                  = du.make_geocentric
get_point_cloud_from_z           = du.get_point_cloud_from_z
get_camera_matrix                = du.get_camera_matrix

def _get_semantic_maps(folder_name, building_name, map, flip):
  # Load file from the cache.
  file_name = '{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.pkl'
  file_name = file_name.format(building_name, map.size[0], map.size[1],
                               map.origin[0], map.origin[1], map.resolution,
                               flip)
  file_name = os.path.join(folder_name, file_name)
  logging.info('Loading semantic maps from %s.', file_name)

  if fu.exists(file_name):
    a = utils.load_variables(file_name)
    maps = a['maps'] #HxWx#C
    cats = a['cats']
  else:
    logging.error('file_name: %s not found.', file_name)
    maps = None
    cats = None
  return maps, cats

def _select_classes(all_maps, all_cats, cats_to_use):
  inds = []
  for c in cats_to_use:
    ind = all_cats.index(c)
    inds.append(ind)
  out_maps = all_maps[:,:,inds]
  return out_maps

def _get_room_dimensions(file_name, resolution, origin, flip=False):
  if fu.exists(file_name):
    a = utils.load_variables(file_name)['room_dimension']
    names = a.keys()
    dims = np.concatenate(a.values(), axis=0).reshape((-1,6))
    ind = np.argsort(names)
    dims = dims[ind,:]
    names = [names[x] for x in ind]
    if flip:
      dims_new = dims*1
      dims_new[:,1] = -dims[:,4]
      dims_new[:,4] = -dims[:,1]
      dims = dims_new*1

    dims = dims*100.
    dims[:,0] = dims[:,0] - origin[0]
    dims[:,1] = dims[:,1] - origin[1]
    dims[:,3] = dims[:,3] - origin[0]
    dims[:,4] = dims[:,4] - origin[1]
    dims = dims / resolution
    out = {'names': names, 'dims': dims}
  else:
    out = None
  return out

def _filter_rooms(room_dims, room_regex):
  pattern = re.compile(room_regex)
  ind = []
  for i, name in enumerate(room_dims['names']):
    if pattern.match(name):
      ind.append(i)
  new_room_dims = {}
  new_room_dims['names'] = [room_dims['names'][i] for i in ind]
  new_room_dims['dims'] = room_dims['dims'][ind,:]*1
  return new_room_dims

def _label_nodes_with_room_id(xyt, room_dims):
  # Label the room with the ID into things.
  node_room_id = -1*np.ones((xyt.shape[0], 1))
  dims = room_dims['dims']
  for x, name in enumerate(room_dims['names']):
    all_ = np.concatenate((xyt[:,[0]] >= dims[x,0],
                           xyt[:,[0]] <= dims[x,3],
                           xyt[:,[1]] >= dims[x,1],
                           xyt[:,[1]] <= dims[x,4]), axis=1)
    node_room_id[np.all(all_, axis=1), 0] = x
  return node_room_id

def get_path_ids(start_node_id, end_node_id, pred_map):
  id = start_node_id
  path = [id]
  while id != end_node_id:
    id = pred_map[id]
    path.append(id)
  return path

def image_pre(images, modalities):
  # Assumes images are ...xHxWxC.
  # We always assume images are RGB followed by Depth.
  if 'depth' in modalities:
    d = images[...,-1][...,np.newaxis]*1.
    d[d < 0.01] = np.NaN; isnan = np.isnan(d);
    d = 100./d; d[isnan] = 0.;
    images = np.concatenate((images[...,:-1], d, isnan), axis=images.ndim-1)
  if 'rgb' in modalities:
    images[...,:3] = images[...,:3]*1. - 128
  return images

def _get_relative_goal_loc(goal_loc, loc, theta):
  r = np.sqrt(np.sum(np.square(goal_loc - loc), axis=1))
  t = np.arctan2(goal_loc[:,1] - loc[:,1], goal_loc[:,0] - loc[:,0])
  t = t-theta[:,0] + np.pi/2
  return np.expand_dims(r,axis=1), np.expand_dims(t, axis=1)

def _gen_perturbs(rng, batch_size, num_steps, lr_flip, delta_angle, delta_xy,
                  structured):
  perturbs = []
  for i in range(batch_size):
    # Doing things one by one for each episode in this batch. This way this
    # remains replicatable even when we change the batch size.
    p = np.zeros((num_steps+1, 4))
    if lr_flip:
      # Flip the whole trajectory.
      p[:,3] = rng.rand(1)-0.5
    if delta_angle > 0:
      if structured:
        p[:,2] = (rng.rand(1)-0.5)* delta_angle
      else:
        p[:,2] = (rng.rand(p.shape[0])-0.5)* delta_angle
    if delta_xy > 0:
      if structured:
        p[:,:2] = (rng.rand(1, 2)-0.5)*delta_xy
      else:
        p[:,:2] = (rng.rand(p.shape[0], 2)-0.5)*delta_xy
    perturbs.append(p)
  return perturbs

def get_multiplexer_class(args, task_number):
  assert(args.task_params.base_class == 'Building')
  logging.info('Returning BuildingMultiplexer')
  R = BuildingMultiplexer(args, task_number)
  return R

class GridWorld():
  def __init__(self):
    """Class members that will be assigned by any class that actually uses this
    class."""
    self.restrict_to_largest_cc = None
    self.robot = None
    self.env = None
    self.category_list = None
    self.traversible = None

  def get_loc_axis(self, node, delta_theta, perturb=None):
    """Based on the node orientation returns X, and Y axis. Used to sample the
    map in egocentric coordinate frame.
    """
    if type(node) == tuple:
      node = np.array([node])
    if perturb is None:
      perturb = np.zeros((node.shape[0], 4))
    xyt = self.to_actual_xyt_vec(node)
    x = xyt[:,[0]] + perturb[:,[0]]
    y = xyt[:,[1]] + perturb[:,[1]]
    t = xyt[:,[2]] + perturb[:,[2]]
    theta = t*delta_theta
    loc = np.concatenate((x,y), axis=1)
    x_axis = np.concatenate((np.cos(theta), np.sin(theta)), axis=1)
    y_axis = np.concatenate((np.cos(theta+np.pi/2.), np.sin(theta+np.pi/2.)),
                            axis=1)
    # Flip the sampled map where need be.
    y_axis[np.where(perturb[:,3] > 0)[0], :] *= -1.
    return loc, x_axis, y_axis, theta

  def to_actual_xyt(self, pqr):
    """Converts from node to location on the map."""
    (p, q, r) = pqr
    if self.task.n_ori == 6:
      out = (p - q * 0.5 + self.task.origin_loc[0],
             q * np.sqrt(3.) / 2. + self.task.origin_loc[1], r)
    elif self.task.n_ori == 4:
      out = (p + self.task.origin_loc[0],
             q + self.task.origin_loc[1], r)
    return out

  def to_actual_xyt_vec(self, pqr):
    """Converts from node array to location array on the map."""
    p = pqr[:,0][:, np.newaxis]
    q = pqr[:,1][:, np.newaxis]
    r = pqr[:,2][:, np.newaxis]
    if self.task.n_ori == 6:
      out = np.concatenate((p - q * 0.5 + self.task.origin_loc[0],
                            q * np.sqrt(3.) / 2. + self.task.origin_loc[1],
                            r), axis=1)
    elif self.task.n_ori == 4:
      out = np.concatenate((p + self.task.origin_loc[0],
                            q + self.task.origin_loc[1],
                            r), axis=1)
    return out

  def raw_valid_fn_vec(self, xyt):
    """Returns if the given set of nodes is valid or not."""
    height = self.traversible.shape[0]
    width = self.traversible.shape[1]
    x = np.round(xyt[:,[0]]).astype(np.int32)
    y = np.round(xyt[:,[1]]).astype(np.int32)
    is_inside = np.all(np.concatenate((x >= 0, y >= 0,
                                       x < width, y < height), axis=1), axis=1)
    x = np.minimum(np.maximum(x, 0), width-1)
    y = np.minimum(np.maximum(y, 0), height-1)
    ind = np.ravel_multi_index((y,x), self.traversible.shape)
    is_traversible = self.traversible.ravel()[ind]

    is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
                                     axis=1), axis=1)
    return is_valid


  def valid_fn_vec(self, pqr):
    """Returns if the given set of nodes is valid or not."""
    xyt = self.to_actual_xyt_vec(np.array(pqr))
    height = self.traversible.shape[0]
    width = self.traversible.shape[1]
    x = np.round(xyt[:,[0]]).astype(np.int32)
    y = np.round(xyt[:,[1]]).astype(np.int32)
    is_inside = np.all(np.concatenate((x >= 0, y >= 0,
                                       x < width, y < height), axis=1), axis=1)
    x = np.minimum(np.maximum(x, 0), width-1)
    y = np.minimum(np.maximum(y, 0), height-1)
    ind = np.ravel_multi_index((y,x), self.traversible.shape)
    is_traversible = self.traversible.ravel()[ind]

    is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
                                     axis=1), axis=1)
    return is_valid

  def get_feasible_actions(self, node_ids):
    """Returns the feasible set of actions from the current node."""
    a = np.zeros((len(node_ids), self.task_params.num_actions), dtype=np.int32)
    gtG = self.task.gtG
    next_node = []
    for i, c in enumerate(node_ids):
      neigh = gtG.vertex(c).out_neighbours()
      neigh_edge = gtG.vertex(c).out_edges()
      nn = {}
      for n, e in zip(neigh, neigh_edge):
        _ = gtG.ep['action'][e]
        a[i,_] = 1
        nn[_] = int(n)
      next_node.append(nn)
    return a, next_node

  def take_action(self, current_node_ids, action):
    """Returns the new node after taking the action action. Stays at the current
    node if the action is invalid."""
    actions, next_node_ids = self.get_feasible_actions(current_node_ids)
    new_node_ids = []
    for i, (c,a) in enumerate(zip(current_node_ids, action)):
      if actions[i,a] == 1:
        new_node_ids.append(next_node_ids[i][a])
      else:
        new_node_ids.append(c)
    return new_node_ids

  def set_r_obj(self, r_obj):
    """Sets the SwiftshaderRenderer object used for rendering."""
    self.r_obj = r_obj

class Building(GridWorld):
  def __init__(self, building_name, robot, env,
               category_list=None, small=False, flip=False, logdir=None,
               building_loader=None):

    self.restrict_to_largest_cc = True
    self.robot = robot
    self.env = env
    self.logdir = logdir

    # Load the building meta data.
    building = building_loader.load_building(building_name)
    if small:
      building['mesh_names'] = building['mesh_names'][:5]

    # New code.
    shapess = building_loader.load_building_meshes(building)
    if flip:
      for shapes in shapess:
        shapes.flip_shape()

    vs = []
    for shapes in shapess:
      vs.append(shapes.get_vertices()[0])
    vs = np.concatenate(vs, axis=0)
    map = make_map(env.padding, env.resolution, vertex=vs, sc=100.)
    map = compute_traversibility(
        map, robot.base, robot.height, robot.radius, env.valid_min,
        env.valid_max, env.num_point_threshold, shapess=shapess, sc=100.,
        n_samples_per_face=env.n_samples_per_face)

    room_dims = _get_room_dimensions(building['room_dimension_file'],
                                     env.resolution, map.origin, flip=flip)
    class_maps, class_map_names = _get_semantic_maps(
        building['class_map_folder'], building_name, map, flip)

    self.class_maps      = class_maps
    self.class_map_names = class_map_names
    self.building        = building
    self.shapess         = shapess
    self.map             = map
    self.traversible     = map.traversible*1
    self.building_name   = building_name
    self.room_dims       = room_dims
    self.flipped         = flip
    self.renderer_entitiy_ids = []

    if self.restrict_to_largest_cc:
      self.traversible = pick_largest_cc(self.traversible)

  def load_building_into_scene(self):
    # Loads the scene.
    self.renderer_entitiy_ids += self.r_obj.load_shapes(self.shapess)
    # Free up memory, we dont need the mesh or the materials anymore.
    self.shapess = None

  def add_entity_at_nodes(self, nodes, height, shape):
    xyt = self.to_actual_xyt_vec(nodes)
    nxy = xyt[:,:2]*1.
    nxy = nxy * self.map.resolution
    nxy = nxy + self.map.origin
    Ts = np.concatenate((nxy, nxy[:,:1]), axis=1)
    Ts[:,2] = height; Ts = Ts / 100.;

    # Merge all the shapes into a single shape and add that shape.
    shape.replicate_shape(Ts)
    entity_ids = self.r_obj.load_shapes([shape])
    self.renderer_entitiy_ids += entity_ids
    return entity_ids

  def add_shapes(self, shapes):
    scene = self.r_obj.viz.scene()
    for shape in shapes:
      scene.AddShape(shape)

  def add_materials(self, materials):
    scene = self.r_obj.viz.scene()
    for material in materials:
      scene.AddOrUpdateMaterial(material)

  def set_building_visibility(self, visibility):
    self.r_obj.set_entity_visible(self.renderer_entitiy_ids, visibility)

  def render_nodes(self, nodes, perturb=None, aux_delta_theta=0.):
    self.set_building_visibility(True)
    if perturb is None:
      perturb = np.zeros((len(nodes), 4))

    imgs = []
    r = 2
    elevation_z = r * np.tan(np.deg2rad(self.robot.camera_elevation_degree))

    for i in range(len(nodes)):
      xyt = self.to_actual_xyt(nodes[i])
      lookat_theta = 3.0 * np.pi / 2.0 - (xyt[2]+perturb[i,2]+aux_delta_theta) * (self.task.delta_theta)
      nxy = np.array([xyt[0]+perturb[i,0], xyt[1]+perturb[i,1]]).reshape(1, -1)
      nxy = nxy * self.map.resolution
      nxy = nxy + self.map.origin
      camera_xyz = np.zeros((1, 3))
      camera_xyz[...] = [nxy[0, 0], nxy[0, 1], self.robot.sensor_height]
      camera_xyz = camera_xyz / 100.
      lookat_xyz = np.array([-r * np.sin(lookat_theta),
                             -r * np.cos(lookat_theta), elevation_z])
      lookat_xyz = lookat_xyz + camera_xyz[0, :]
      self.r_obj.position_camera(camera_xyz[0, :].tolist(),
                                 lookat_xyz.tolist(), [0.0, 0.0, 1.0])
      img = self.r_obj.render(take_screenshot=True, output_type=0)
      img = [x for x in img if x is not None]
      img = np.concatenate(img, axis=2).astype(np.float32)
      if perturb[i,3]>0:
        img = img[:,::-1,:]
      imgs.append(img)

    self.set_building_visibility(False)
    return imgs


class MeshMapper(Building):
  def __init__(self, robot, env, task_params, building_name, category_list,
               flip, logdir=None, building_loader=None):
    Building.__init__(self, building_name, robot, env, category_list,
                      small=task_params.toy_problem, flip=flip, logdir=logdir,
                      building_loader=building_loader)
    self.task_params = task_params
    self.task = None
    self._preprocess_for_task(self.task_params.building_seed)

  def _preprocess_for_task(self, seed):
    if self.task is None or self.task.seed != seed:
      rng = np.random.RandomState(seed)
      origin_loc = get_graph_origin_loc(rng, self.traversible)
      self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
                            n_ori=self.task_params.n_ori)
      G = generate_graph(self.valid_fn_vec,
                                  self.task_params.step_size, self.task.n_ori,
                                  (0, 0, 0))
      gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
      self.task.gtG = gtG
      self.task.nodes = nodes
      self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
      self.task.nodes_to_id = nodes_to_id
      logging.info('Building %s, #V=%d, #E=%d', self.building_name,
                   self.task.nodes.shape[0], self.task.gtG.num_edges())

      if self.logdir is not None:
        write_traversible = cv2.applyColorMap(self.traversible.astype(np.uint8)*255, cv2.COLORMAP_JET)
        img_path = os.path.join(self.logdir,
                                '{:s}_{:d}_graph.png'.format(self.building_name,
                                                             seed))
        node_xyt = self.to_actual_xyt_vec(self.task.nodes)
        plt.set_cmap('jet');
        fig, ax = utils.subplot(plt, (1,1), (12,12))
        ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
        ax.imshow(self.traversible, origin='lower');
        ax.set_axis_off(); ax.axis('equal');
        ax.set_title('{:s}, {:d}, {:d}'.format(self.building_name,
                                               self.task.nodes.shape[0],
                                               self.task.gtG.num_edges()))
        if self.room_dims is not None:
          for i, r in enumerate(self.room_dims['dims']*1):
            min_ = r[:3]*1
            max_ = r[3:]*1
            xmin, ymin, zmin = min_
            xmax, ymax, zmax = max_

            ax.plot([xmin, xmax, xmax, xmin, xmin],
                    [ymin, ymin, ymax, ymax, ymin], 'g')
        with fu.fopen(img_path, 'w') as f:
          fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
        plt.close(fig)


  def _gen_rng(self, rng):
    # instances is a list of list of node_ids.
    if self.task_params.move_type == 'circle':
      _, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
                                                self.task.gtG, rng, 0, 1,
                                                compute_path=True)
      instances_ = paths

      instances = []
      for instance_ in instances_:
        instance = instance_
        for i in range(self.task_params.num_steps):
          instance.append(self.take_action([instance[-1]], [1])[0])
        instances.append(instance)

    elif self.task_params.move_type == 'shortest_path':
      _, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
                                                self.task.gtG, rng,
                                                self.task_params.num_steps,
                                                self.task_params.num_steps+1,
                                                compute_path=True)
      instances = paths

    elif self.task_params.move_type == 'circle+forward':
      _, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
                                                self.task.gtG, rng, 0, 1,
                                                compute_path=True)
      instances_ = paths
      instances = []
      for instance_ in instances_:
        instance = instance_
        for i in range(self.task_params.n_ori-1):
          instance.append(self.take_action([instance[-1]], [1])[0])
        while len(instance) <= self.task_params.num_steps:
          while self.take_action([instance[-1]], [3])[0] == instance[-1] and len(instance) <= self.task_params.num_steps:
            instance.append(self.take_action([instance[-1]], [2])[0])
          if len(instance) <= self.task_params.num_steps:
            instance.append(self.take_action([instance[-1]], [3])[0])
        instances.append(instance)

    # Do random perturbation if needed.
    perturbs = _gen_perturbs(rng, self.task_params.batch_size,
                             self.task_params.num_steps,
                             self.task_params.data_augment.lr_flip,
                             self.task_params.data_augment.delta_angle,
                             self.task_params.data_augment.delta_xy,
                             self.task_params.data_augment.structured)
    return instances, perturbs

  def worker(self, instances, perturbs):
    # Output the images and the free space.

    # Make the instances be all the same length.
    for i in range(len(instances)):
      for j in range(self.task_params.num_steps - len(instances[i]) + 1):
        instances[i].append(instances[i][-1])
      if perturbs[i].shape[0] < self.task_params.num_steps+1:
        p = np.zeros((self.task_params.num_steps+1, 4))
        p[:perturbs[i].shape[0], :] = perturbs[i]
        p[perturbs[i].shape[0]:, :] = perturbs[i][-1,:]
        perturbs[i] = p

    instances_ = []
    for instance in instances:
      instances_ = instances_ + instance
    perturbs_ = np.concatenate(perturbs, axis=0)

    instances_nodes = self.task.nodes[instances_,:]
    instances_nodes = [tuple(x) for x in instances_nodes]

    imgs_ = self.render_nodes(instances_nodes, perturbs_)
    imgs = []; next = 0;
    for instance in instances:
      img_i = []
      for _ in instance:
        img_i.append(imgs_[next])
        next = next+1
      imgs.append(img_i)
    imgs = np.array(imgs)

    # Render out the maps in the egocentric view for all nodes and not just the
    # last node.
    all_nodes = []
    for x in instances:
      all_nodes = all_nodes + x
    all_perturbs = np.concatenate(perturbs, axis=0)
    loc, x_axis, y_axis, theta = self.get_loc_axis(
        self.task.nodes[all_nodes, :]*1, delta_theta=self.task.delta_theta,
        perturb=all_perturbs)
    fss = None
    valids = None
    loc_on_map = None
    theta_on_map = None
    cum_fs = None
    cum_valid = None
    incremental_locs = None
    incremental_thetas = None

    if self.task_params.output_free_space:
      fss, valids = get_map_to_predict(loc, x_axis, y_axis,
                                       map=self.traversible*1.,
                                       map_size=self.task_params.map_size)
      fss = np.array(fss) > 0.5
      fss = np.reshape(fss, [self.task_params.batch_size,
                             self.task_params.num_steps+1,
                             self.task_params.map_size,
                             self.task_params.map_size])
      valids = np.reshape(np.array(valids), fss.shape)

    if self.task_params.output_transform_to_global_map:
      # Output the transform to the global map.
      loc_on_map = np.reshape(loc*1, [self.task_params.batch_size,
                                      self.task_params.num_steps+1, -1])
      # Converting to location wrt to first location so that warping happens
      # properly.
      theta_on_map = np.reshape(theta*1, [self.task_params.batch_size,
                                            self.task_params.num_steps+1, -1])

    if self.task_params.output_incremental_transform:
      # Output the transform to the global map.
      incremental_locs_ = np.reshape(loc*1, [self.task_params.batch_size,
                                             self.task_params.num_steps+1, -1])
      incremental_locs_[:,1:,:] -= incremental_locs_[:,:-1,:]
      t0 = -np.pi/2+np.reshape(theta*1, [self.task_params.batch_size,
                                        self.task_params.num_steps+1, -1])
      t = t0*1
      incremental_locs = incremental_locs_*1
      incremental_locs[:,:,0] = np.sum(incremental_locs_ * np.concatenate((np.cos(t), np.sin(t)), axis=-1), axis=-1)
      incremental_locs[:,:,1] = np.sum(incremental_locs_ * np.concatenate((np.cos(t+np.pi/2), np.sin(t+np.pi/2)), axis=-1), axis=-1)
      incremental_locs[:,0,:] = incremental_locs_[:,0,:]
      # print incremental_locs_[0,:,:], incremental_locs[0,:,:], t0[0,:,:]

      incremental_thetas = np.reshape(theta*1, [self.task_params.batch_size,
                                                self.task_params.num_steps+1,
                                                -1])
      incremental_thetas[:,1:,:] += -incremental_thetas[:,:-1,:]

    if self.task_params.output_canonical_map:
      loc_ = loc[0::(self.task_params.num_steps+1), :]
      x_axis = np.zeros_like(loc_); x_axis[:,1] = 1
      y_axis = np.zeros_like(loc_); y_axis[:,0] = -1
      cum_fs, cum_valid = get_map_to_predict(loc_, x_axis, y_axis,
                                             map=self.traversible*1.,
                                             map_size=self.task_params.map_size)
      cum_fs = np.array(cum_fs) > 0.5
      cum_fs = np.reshape(cum_fs, [self.task_params.batch_size, 1,
                                   self.task_params.map_size,
                                   self.task_params.map_size])
      cum_valid = np.reshape(np.array(cum_valid), cum_fs.shape)


    inputs = {'fs_maps': fss,
              'valid_maps': valids,
              'imgs': imgs,
              'loc_on_map': loc_on_map,
              'theta_on_map': theta_on_map,
              'cum_fs_maps': cum_fs,
              'cum_valid_maps': cum_valid,
              'incremental_thetas': incremental_thetas,
              'incremental_locs': incremental_locs}
    return inputs

  def pre(self, inputs):
    inputs['imgs'] = image_pre(inputs['imgs'], self.task_params.modalities)
    if inputs['loc_on_map'] is not None:
      inputs['loc_on_map'] = inputs['loc_on_map'] - inputs['loc_on_map'][:,[0],:]
    if inputs['theta_on_map'] is not None:
      inputs['theta_on_map'] = np.pi/2. - inputs['theta_on_map']
    return inputs

def _nav_env_reset_helper(type, rng, nodes, batch_size, gtG, max_dist,
                          num_steps, num_goals, data_augment, **kwargs):
  """Generates and returns a new episode."""
  max_compute = max_dist + 4*num_steps
  if type == 'general':
    start_node_ids, end_node_ids, dist, pred_map, paths = \
        rng_target_dist_field(batch_size, gtG, rng, max_dist, max_compute,
                              nodes=nodes, compute_path=False)
    target_class = None

  elif type == 'room_to_room_many':
    goal_node_ids = []; dists = [];
    node_room_ids = kwargs['node_room_ids']
    # Sample the first one
    start_node_ids_, end_node_ids_, dist_, _, _ = rng_room_to_room(
        batch_size, gtG, rng, max_dist, max_compute,
        node_room_ids=node_room_ids, nodes=nodes)
    start_node_ids = start_node_ids_
    goal_node_ids.append(end_node_ids_)
    dists.append(dist_)
    for n in range(num_goals-1):
      start_node_ids_, end_node_ids_, dist_, _, _ = rng_next_goal(
          goal_node_ids[n], batch_size, gtG, rng, max_dist,
          max_compute, node_room_ids=node_room_ids, nodes=nodes,
          dists_from_start_node=dists[n])
      goal_node_ids.append(end_node_ids_)
      dists.append(dist_)
    target_class = None

  elif type == 'rng_rejection_sampling_many':
    num_goals = num_goals
    goal_node_ids = []; dists = [];

    n_ori = kwargs['n_ori']
    step_size = kwargs['step_size']
    min_dist = kwargs['min_dist']
    sampling_distribution = kwargs['sampling_distribution']
    target_distribution = kwargs['target_distribution']
    rejection_sampling_M = kwargs['rejection_sampling_M']
    distribution_bins = kwargs['distribution_bins']

    for n in range(num_goals):
      if n == 0: input_nodes = None
      else: input_nodes = goal_node_ids[n-1]
      start_node_ids_, end_node_ids_, dist_, _, _, _, _ = rng_next_goal_rejection_sampling(
              input_nodes, batch_size, gtG, rng, max_dist, min_dist,
              max_compute, sampling_distribution, target_distribution, nodes,
              n_ori, step_size, distribution_bins, rejection_sampling_M)
      if n == 0: start_node_ids = start_node_ids_
      goal_node_ids.append(end_node_ids_)
      dists.append(dist_)
    target_class = None

  elif type == 'room_to_room_back':
    num_goals = num_goals
    assert(num_goals == 2), 'num_goals must be 2.'
    goal_node_ids = []; dists = [];
    node_room_ids = kwargs['node_room_ids']
    # Sample the first one.
    start_node_ids_, end_node_ids_, dist_, _, _ = rng_room_to_room(
        batch_size, gtG, rng, max_dist, max_compute,
        node_room_ids=node_room_ids, nodes=nodes)
    start_node_ids = start_node_ids_
    goal_node_ids.append(end_node_ids_)
    dists.append(dist_)

    # Set second goal to be starting position, and compute distance to the start node.
    goal_node_ids.append(start_node_ids)
    dist = []
    for i in range(batch_size):
      dist_ = gt.topology.shortest_distance(
          gt.GraphView(gtG, reversed=True),
          source=gtG.vertex(start_node_ids[i]), target=None)
      dist_ = np.array(dist_.get_array())
      dist.append(dist_)
    dists.append(dist)
    target_class = None

  elif type[:14] == 'to_nearest_obj':
    # Generate an episode by sampling one of the target classes (with
    # probability proportional to the number of nodes in the world).
    # With the sampled class sample a node that is within some distance from
    # the sampled class.
    class_nodes   = kwargs['class_nodes']
    sampling      = kwargs['sampling']
    dist_to_class = kwargs['dist_to_class']

    assert(num_goals == 1), 'Only supports a single goal.'
    ind = rng.choice(class_nodes.shape[0], size=batch_size)
    target_class = class_nodes[ind,1]
    start_node_ids = []; dists = []; goal_node_ids = [];

    for t in target_class:
      if sampling == 'uniform':
        max_dist = max_dist
        cnts = np.bincount(dist_to_class[t], minlength=max_dist+1)*1.
        cnts[max_dist+1:] = 0
        p_each = 1./ cnts / (max_dist+1.)
        p_each[cnts == 0] = 0
        p = p_each[dist_to_class[t]]*1.; p = p/np.sum(p)
        start_node_id = rng.choice(p.shape[0], size=1, p=p)[0]
      else:
        logging.fatal('Sampling not one of uniform.')
      start_node_ids.append(start_node_id)
      dists.append(dist_to_class[t])
      # Dummy goal node, same as the start node, so that vis is better.
      goal_node_ids.append(start_node_id)
    dists = [dists]
    goal_node_ids = [goal_node_ids]

  return start_node_ids, goal_node_ids, dists, target_class


class NavigationEnv(GridWorld, Building):
  """Wrapper around GridWorld which sets up navigation tasks.
  """
  def _debug_save_hardness(self, seed):
    out_path = os.path.join(self.logdir, '{:s}_{:d}_hardness.png'.format(self.building_name, seed))
    batch_size = 4000
    rng = np.random.RandomState(0)
    start_node_ids, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists = \
      rng_next_goal_rejection_sampling(
          None, batch_size, self.task.gtG, rng, self.task_params.max_dist,
          self.task_params.min_dist, self.task_params.max_dist,
          self.task.sampling_distribution, self.task.target_distribution,
          self.task.nodes, self.task_params.n_ori, self.task_params.step_size,
          self.task.distribution_bins, self.task.rejection_sampling_M)
    bins = self.task.distribution_bins 
    n_bins = self.task.n_bins
    with plt.style.context('ggplot'):
      fig, axes = utils.subplot(plt, (1,2), (10,10))
      ax = axes[0]
      _ = ax.hist(hardnesss, bins=bins, weights=np.ones_like(hardnesss)/len(hardnesss))
      ax.plot(bins[:-1]+0.5/n_bins, self.task.target_distribution, 'g')
      ax.plot(bins[:-1]+0.5/n_bins, self.task.sampling_distribution, 'b')
      ax.grid('on')
      
      ax = axes[1]
      _ = ax.hist(gt_dists, bins=np.arange(self.task_params.max_dist+1))
      ax.grid('on')
      ax.set_title('Mean: {:0.2f}, Median: {:0.2f}'.format(np.mean(gt_dists),
                                                           np.median(gt_dists)))
      with fu.fopen(out_path, 'w') as f:
        fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)

  def _debug_save_map_nodes(self, seed):
    """Saves traversible space along with nodes generated on the graph. Takes
    the seed as input."""
    img_path = os.path.join(self.logdir, '{:s}_{:d}_graph.png'.format(self.building_name, seed))
    node_xyt = self.to_actual_xyt_vec(self.task.nodes)
    plt.set_cmap('jet');
    fig, ax = utils.subplot(plt, (1,1), (12,12))
    ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
    ax.set_axis_off(); ax.axis('equal');
    
    if self.room_dims is not None:
      for i, r in enumerate(self.room_dims['dims']*1):
        min_ = r[:3]*1
        max_ = r[3:]*1
        xmin, ymin, zmin = min_
        xmax, ymax, zmax = max_

        ax.plot([xmin, xmax, xmax, xmin, xmin],
                [ymin, ymin, ymax, ymax, ymin], 'g')
    ax.imshow(self.traversible, origin='lower');
    with fu.fopen(img_path, 'w') as f:
      fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)

  def _debug_semantic_maps(self, seed):
    """Saves traversible space along with nodes generated on the graph. Takes
    the seed as input."""
    for i, cls in enumerate(self.task_params.semantic_task.class_map_names):
      img_path = os.path.join(self.logdir, '{:s}_flip{:d}_{:s}_graph.png'.format(self.building_name, seed, cls))
      maps = self.traversible*1.
      maps += 0.5*(self.task.class_maps_dilated[:,:,i])
      write_traversible = (maps*1.+1.)/3.0
      write_traversible = (write_traversible*255.).astype(np.uint8)[:,:,np.newaxis]
      write_traversible = write_traversible + np.zeros((1,1,3), dtype=np.uint8)
      fu.write_image(img_path, write_traversible[::-1,:,:])

  def _preprocess_for_task(self, seed):
    """Sets up the task field for doing navigation on the grid world."""
    if self.task is None or self.task.seed != seed:
      rng = np.random.RandomState(seed)
      origin_loc = get_graph_origin_loc(rng, self.traversible)
      self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
                            n_ori=self.task_params.n_ori)
      G = generate_graph(self.valid_fn_vec, self.task_params.step_size,
                         self.task.n_ori, (0, 0, 0))
      gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
      self.task.gtG = gtG
      self.task.nodes = nodes
      self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
      self.task.nodes_to_id = nodes_to_id

      logging.info('Building %s, #V=%d, #E=%d', self.building_name,
                   self.task.nodes.shape[0], self.task.gtG.num_edges())
      type = self.task_params.type
      if type == 'general':
        # Do nothing
        _ = None

      elif type == 'room_to_room_many' or type == 'room_to_room_back':
        if type == 'room_to_room_back':
          assert(self.task_params.num_goals == 2), 'num_goals must be 2.'

        self.room_dims = _filter_rooms(self.room_dims, self.task_params.room_regex)
        xyt = self.to_actual_xyt_vec(self.task.nodes)
        self.task.node_room_ids = _label_nodes_with_room_id(xyt, self.room_dims)
        self.task.reset_kwargs = {'node_room_ids': self.task.node_room_ids}

      elif type == 'rng_rejection_sampling_many':
        n_bins = 20
        rejection_sampling_M = self.task_params.rejection_sampling_M
        min_dist = self.task_params.min_dist
        bins = np.arange(n_bins+1)/(n_bins*1.)
        target_d = np.zeros(n_bins); target_d[...] = 1./n_bins;

        sampling_d = get_hardness_distribution(
            self.task.gtG, self.task_params.max_dist, self.task_params.min_dist,
            np.random.RandomState(0), 4000, bins, self.task.nodes,
            self.task_params.n_ori, self.task_params.step_size)

        self.task.reset_kwargs = {'distribution_bins': bins,
                                  'target_distribution': target_d,
                                  'sampling_distribution': sampling_d,
                                  'rejection_sampling_M': rejection_sampling_M,
                                  'n_bins': n_bins, 
                                  'n_ori': self.task_params.n_ori,
                                  'step_size': self.task_params.step_size,
                                  'min_dist': self.task_params.min_dist}
        self.task.n_bins = n_bins
        self.task.distribution_bins = bins
        self.task.target_distribution = target_d
        self.task.sampling_distribution = sampling_d
        self.task.rejection_sampling_M = rejection_sampling_M

        if self.logdir is not None:
          self._debug_save_hardness(seed)

      elif type[:14] == 'to_nearest_obj':
        self.room_dims = _filter_rooms(self.room_dims, self.task_params.room_regex)
        xyt = self.to_actual_xyt_vec(self.task.nodes)

        self.class_maps = _select_classes(self.class_maps,
                                          self.class_map_names,
                                          self.task_params.semantic_task.class_map_names)*1
        self.class_map_names = self.task_params.semantic_task.class_map_names
        nodes_xyt = self.to_actual_xyt_vec(np.array(self.task.nodes))

        tt = utils.Timer(); tt.tic();
        if self.task_params.type == 'to_nearest_obj_acc':
          self.task.class_maps_dilated, self.task.node_class_label = label_nodes_with_class_geodesic(
            nodes_xyt, self.class_maps,
            self.task_params.semantic_task.pix_distance+8, self.map.traversible,
            ff_cost=1., fo_cost=1., oo_cost=4., connectivity=8.)

        dists = []
        for i in range(len(self.class_map_names)):
          class_nodes_ = np.where(self.task.node_class_label[:,i])[0]
          dists.append(get_distance_node_list(gtG, source_nodes=class_nodes_, direction='to'))
        self.task.dist_to_class = dists
        a_, b_ = np.where(self.task.node_class_label)
        self.task.class_nodes = np.concatenate((a_[:,np.newaxis], b_[:,np.newaxis]), axis=1)
        
        if self.logdir is not None:
          self._debug_semantic_maps(seed)
        
        self.task.reset_kwargs = {'sampling': self.task_params.semantic_task.sampling,
                                  'class_nodes': self.task.class_nodes,
                                  'dist_to_class': self.task.dist_to_class}

      if self.logdir is not None:
        self._debug_save_map_nodes(seed)

  def reset(self, rngs):
    rng = rngs[0]; rng_perturb = rngs[1];
    nodes = self.task.nodes
    tp = self.task_params

    start_node_ids, goal_node_ids, dists, target_class = \
        _nav_env_reset_helper(tp.type, rng, self.task.nodes, tp.batch_size,
                              self.task.gtG, tp.max_dist, tp.num_steps,
                              tp.num_goals, tp.data_augment,
                              **(self.task.reset_kwargs))

    start_nodes = [tuple(nodes[_,:]) for _ in start_node_ids]
    goal_nodes = [[tuple(nodes[_,:]) for _ in __] for __ in goal_node_ids]
    data_augment = tp.data_augment
    perturbs = _gen_perturbs(rng_perturb, tp.batch_size,
                             (tp.num_steps+1)*tp.num_goals,
                             data_augment.lr_flip, data_augment.delta_angle,
                             data_augment.delta_xy, data_augment.structured)
    perturbs = np.array(perturbs) # batch x steps x 4
    end_perturbs = perturbs[:,-(tp.num_goals):,:]*1 # fixed perturb for the goal.
    perturbs = perturbs[:,:-(tp.num_goals),:]*1

    history = -np.ones((tp.batch_size, tp.num_steps*tp.num_goals), dtype=np.int32)
    self.episode = utils.Foo(
        start_nodes=start_nodes, start_node_ids=start_node_ids,
        goal_nodes=goal_nodes, goal_node_ids=goal_node_ids, dist_to_goal=dists,
        perturbs=perturbs, goal_perturbs=end_perturbs, history=history,
        target_class=target_class, history_frames=[])
    return start_node_ids

  def take_action(self, current_node_ids, action, step_number):
    """In addition to returning the action, also returns the reward that the
    agent receives."""
    goal_number = step_number / self.task_params.num_steps
    new_node_ids = GridWorld.take_action(self, current_node_ids, action)
    rewards = []
    for i, n in enumerate(new_node_ids):
      reward = 0
      if n == self.episode.goal_node_ids[goal_number][i]:
        reward = self.task_params.reward_at_goal
      reward = reward - self.task_params.reward_time_penalty
      rewards.append(reward)
    return new_node_ids, rewards


  def get_optimal_action(self, current_node_ids, step_number):
    """Returns the optimal action from the current node."""
    goal_number = step_number / self.task_params.num_steps
    gtG = self.task.gtG
    a = np.zeros((len(current_node_ids), self.task_params.num_actions), dtype=np.int32)
    d_dict = self.episode.dist_to_goal[goal_number]
    for i, c in enumerate(current_node_ids):
      neigh = gtG.vertex(c).out_neighbours()
      neigh_edge = gtG.vertex(c).out_edges()
      ds = np.array([d_dict[i][int(x)] for x in neigh])
      ds_min = np.min(ds)
      for i_, e in enumerate(neigh_edge):
        if ds[i_] == ds_min:
          _ = gtG.ep['action'][e]
          a[i, _] = 1
    return a

  def get_targets(self, current_node_ids, step_number):
    """Returns the target actions from the current node."""
    action = self.get_optimal_action(current_node_ids, step_number)
    action = np.expand_dims(action, axis=1)
    return vars(utils.Foo(action=action))

  def get_targets_name(self):
    """Returns the list of names of the targets."""
    return ['action']

  def cleanup(self):
    self.episode = None

class VisualNavigationEnv(NavigationEnv):
  """Class for doing visual navigation in environments. Functions for computing
  features on states, etc.
  """
  def __init__(self, robot, env, task_params, category_list=None,
               building_name=None, flip=False, logdir=None,
               building_loader=None, r_obj=None):
    tt = utils.Timer()
    tt.tic()
    Building.__init__(self, building_name, robot, env, category_list,
                      small=task_params.toy_problem, flip=flip, logdir=logdir,
                      building_loader=building_loader)

    self.set_r_obj(r_obj)
    self.task_params = task_params
    self.task = None
    self.episode = None
    self._preprocess_for_task(self.task_params.building_seed)
    if hasattr(self.task_params, 'map_scales'):
      self.task.scaled_maps = resize_maps(
          self.traversible.astype(np.float32)*1, self.task_params.map_scales,
          self.task_params.map_resize_method)
    else:
      logging.fatal('VisualNavigationEnv does not support scale_f anymore.')
    self.task.readout_maps_scaled = resize_maps(
      self.traversible.astype(np.float32)*1,
      self.task_params.readout_maps_scales,
      self.task_params.map_resize_method)
    tt.toc(log_at=1, log_str='VisualNavigationEnv __init__: ')

  def get_weight(self):
    return self.task.nodes.shape[0]

  def get_common_data(self):
    goal_nodes = self.episode.goal_nodes
    start_nodes = self.episode.start_nodes
    perturbs = self.episode.perturbs
    goal_perturbs = self.episode.goal_perturbs
    target_class = self.episode.target_class

    goal_locs = []; rel_goal_locs = [];
    for i in range(len(goal_nodes)):
      end_nodes = goal_nodes[i]
      goal_loc, _, _, goal_theta = self.get_loc_axis(
          np.array(end_nodes), delta_theta=self.task.delta_theta,
          perturb=goal_perturbs[:,i,:])

      # Compute the relative location to all goals from the starting location.
      loc, _, _, theta = self.get_loc_axis(np.array(start_nodes),
                                           delta_theta=self.task.delta_theta,
                                           perturb=perturbs[:,0,:])
      r_goal, t_goal = _get_relative_goal_loc(goal_loc*1., loc, theta)
      rel_goal_loc = np.concatenate((r_goal*np.cos(t_goal), r_goal*np.sin(t_goal),
                                     np.cos(goal_theta-theta),
                                     np.sin(goal_theta-theta)), axis=1)
      rel_goal_locs.append(np.expand_dims(rel_goal_loc, axis=1))
      goal_locs.append(np.expand_dims(goal_loc, axis=1))

    map = self.traversible*1.
    maps = np.repeat(np.expand_dims(np.expand_dims(map, axis=0), axis=0),
                     self.task_params.batch_size, axis=0)*1
    if self.task_params.type[:14] == 'to_nearest_obj':
      for i in range(self.task_params.batch_size):
        maps[i,0,:,:] += 0.5*(self.task.class_maps_dilated[:,:,target_class[i]])

    rel_goal_locs = np.concatenate(rel_goal_locs, axis=1)
    goal_locs = np.concatenate(goal_locs, axis=1)
    maps = np.expand_dims(maps, axis=-1)

    if self.task_params.type[:14] == 'to_nearest_obj':
      rel_goal_locs = np.zeros((self.task_params.batch_size, 1,
                                len(self.task_params.semantic_task.class_map_names)),
                               dtype=np.float32)
      goal_locs = np.zeros((self.task_params.batch_size, 1, 2),
                           dtype=np.float32)
      for i in range(self.task_params.batch_size):
          t = target_class[i]
          rel_goal_locs[i,0,t] = 1.
          goal_locs[i,0,0] = t
          goal_locs[i,0,1] = np.NaN

    return vars(utils.Foo(orig_maps=maps, goal_loc=goal_locs,
                          rel_goal_loc_at_start=rel_goal_locs))

  def pre_common_data(self, inputs):
    return inputs


  def get_features(self, current_node_ids, step_number):
    task_params = self.task_params
    goal_number = step_number / self.task_params.num_steps
    end_nodes = self.task.nodes[self.episode.goal_node_ids[goal_number],:]*1
    current_nodes = self.task.nodes[current_node_ids,:]*1
    end_perturbs = self.episode.goal_perturbs[:,goal_number,:][:,np.newaxis,:]
    perturbs = self.episode.perturbs
    target_class = self.episode.target_class

    # Append to history.
    self.episode.history[:,step_number] = np.array(current_node_ids)

    # Render out the images from current node.
    outs = {}

    if self.task_params.outputs.images:
      imgs_all = []
      imgs = self.render_nodes([tuple(x) for x in current_nodes],
                               perturb=perturbs[:,step_number,:])
      imgs_all.append(imgs)
      aux_delta_thetas = self.task_params.aux_delta_thetas
      for i in range(len(aux_delta_thetas)):
        imgs = self.render_nodes([tuple(x) for x in current_nodes],
                                 perturb=perturbs[:,step_number,:],
                                 aux_delta_theta=aux_delta_thetas[i])
        imgs_all.append(imgs)
      imgs_all = np.array(imgs_all) # A x B x H x W x C
      imgs_all = np.transpose(imgs_all, axes=[1,0,2,3,4])
      imgs_all = np.expand_dims(imgs_all, axis=1) # B x N x A x H x W x C
      if task_params.num_history_frames > 0:
        if step_number == 0:
          # Append the same frame 4 times
          for i in range(task_params.num_history_frames+1):
            self.episode.history_frames.insert(0, imgs_all*1.)
        self.episode.history_frames.insert(0, imgs_all)
        self.episode.history_frames.pop()
        imgs_all_with_history = np.concatenate(self.episode.history_frames, axis=2)
      else:
        imgs_all_with_history = imgs_all
      outs['imgs'] = imgs_all_with_history # B x N x A x H x W x C

    if self.task_params.outputs.node_ids:
      outs['node_ids'] = np.array(current_node_ids).reshape((-1,1,1))
      outs['perturbs'] = np.expand_dims(perturbs[:,step_number, :]*1., axis=1)

    if self.task_params.outputs.analytical_counts:
      assert(self.task_params.modalities == ['depth'])
      d = image_pre(outs['imgs']*1., self.task_params.modalities)
      cm = get_camera_matrix(self.task_params.img_width,
                             self.task_params.img_height,
                             self.task_params.img_fov)
      XYZ = get_point_cloud_from_z(100./d[...,0], cm)
      XYZ = make_geocentric(XYZ*100., self.robot.sensor_height,
                                      self.robot.camera_elevation_degree)
      for i in range(len(self.task_params.analytical_counts.map_sizes)):
        non_linearity = self.task_params.analytical_counts.non_linearity[i]
        count, isvalid = bin_points(XYZ*1.,
                                    map_size=self.task_params.analytical_counts.map_sizes[i],
                                    xy_resolution=self.task_params.analytical_counts.xy_resolution[i],
                                    z_bins=self.task_params.analytical_counts.z_bins[i])
        assert(count.shape[2] == 1), 'only works for n_views equal to 1.'
        count = count[:,:,0,:,:,:]
        isvalid = isvalid[:,:,0,:,:,:]
        if non_linearity == 'none':
          None
        elif non_linearity == 'min10':
          count = np.minimum(count, 10.)
        elif non_linearity == 'sqrt':
          count = np.sqrt(count)
        else:
          logging.fatal('Undefined non_linearity.')
        outs['analytical_counts_{:d}'.format(i)] = count

    # Compute the goal location in the cordinate frame of the robot.
    if self.task_params.outputs.rel_goal_loc:
      if self.task_params.type[:14] != 'to_nearest_obj':
        loc, _, _, theta = self.get_loc_axis(current_nodes,
                                             delta_theta=self.task.delta_theta,
                                             perturb=perturbs[:,step_number,:])
        goal_loc, _, _, goal_theta = self.get_loc_axis(end_nodes,
                                                       delta_theta=self.task.delta_theta,
                                                       perturb=end_perturbs[:,0,:])
        r_goal, t_goal = _get_relative_goal_loc(goal_loc, loc, theta)

        rel_goal_loc = np.concatenate((r_goal*np.cos(t_goal), r_goal*np.sin(t_goal),
                                       np.cos(goal_theta-theta),
                                       np.sin(goal_theta-theta)), axis=1)
        outs['rel_goal_loc'] = np.expand_dims(rel_goal_loc, axis=1)
      elif self.task_params.type[:14] == 'to_nearest_obj':
        rel_goal_loc = np.zeros((self.task_params.batch_size, 1,
                                 len(self.task_params.semantic_task.class_map_names)),
                                dtype=np.float32)
        for i in range(self.task_params.batch_size):
          t = target_class[i]
          rel_goal_loc[i,0,t] = 1.
        outs['rel_goal_loc'] = rel_goal_loc

    # Location on map to plot the trajectory during validation.
    if self.task_params.outputs.loc_on_map:
      loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
                                                     delta_theta=self.task.delta_theta,
                                                     perturb=perturbs[:,step_number,:])
      outs['loc_on_map'] = np.expand_dims(loc, axis=1)

    # Compute gt_dist to goal
    if self.task_params.outputs.gt_dist_to_goal:
      gt_dist_to_goal = np.zeros((len(current_node_ids), 1), dtype=np.float32)
      for i, n in enumerate(current_node_ids):
        gt_dist_to_goal[i,0] = self.episode.dist_to_goal[goal_number][i][n]
      outs['gt_dist_to_goal'] = np.expand_dims(gt_dist_to_goal, axis=1)

    # Free space in front of you, map and goal as images.
    if self.task_params.outputs.ego_maps:
      loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
                                                     delta_theta=self.task.delta_theta,
                                                     perturb=perturbs[:,step_number,:])
      maps = generate_egocentric_maps(self.task.scaled_maps,
                                      self.task_params.map_scales,
                                      self.task_params.map_crop_sizes, loc,
                                      x_axis, y_axis, theta)

      for i in range(len(self.task_params.map_scales)):
        outs['ego_maps_{:d}'.format(i)] = \
            np.expand_dims(np.expand_dims(maps[i], axis=1), axis=-1)

    if self.task_params.outputs.readout_maps:
      loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
                                                     delta_theta=self.task.delta_theta,
                                                     perturb=perturbs[:,step_number,:])
      maps = generate_egocentric_maps(self.task.readout_maps_scaled,
                                      self.task_params.readout_maps_scales,
                                      self.task_params.readout_maps_crop_sizes,
                                      loc, x_axis, y_axis, theta)
      for i in range(len(self.task_params.readout_maps_scales)):
        outs['readout_maps_{:d}'.format(i)] = \
            np.expand_dims(np.expand_dims(maps[i], axis=1), axis=-1)

    # Images for the goal.
    if self.task_params.outputs.ego_goal_imgs:
      if self.task_params.type[:14] != 'to_nearest_obj': 
        loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
                                                       delta_theta=self.task.delta_theta,
                                                       perturb=perturbs[:,step_number,:])
        goal_loc, _, _, _ = self.get_loc_axis(end_nodes,
                                              delta_theta=self.task.delta_theta,
                                              perturb=end_perturbs[:,0,:])
        rel_goal_orientation = np.mod(
            np.int32(current_nodes[:,2:] - end_nodes[:,2:]), self.task_params.n_ori)
        goal_dist, goal_theta = _get_relative_goal_loc(goal_loc, loc, theta)
        goals = generate_goal_images(self.task_params.map_scales,
                                     self.task_params.map_crop_sizes,
                                     self.task_params.n_ori, goal_dist,
                                     goal_theta, rel_goal_orientation)
        for i in range(len(self.task_params.map_scales)):
          outs['ego_goal_imgs_{:d}'.format(i)] = np.expand_dims(goals[i], axis=1)

      elif self.task_params.type[:14] == 'to_nearest_obj':
        for i in range(len(self.task_params.map_scales)):
          num_classes = len(self.task_params.semantic_task.class_map_names)
          outs['ego_goal_imgs_{:d}'.format(i)] = np.zeros((self.task_params.batch_size, 1,
                                                           self.task_params.map_crop_sizes[i],
                                                           self.task_params.map_crop_sizes[i],
                                                           self.task_params.goal_channels))
        for i in range(self.task_params.batch_size):
          t = target_class[i]
          for j in range(len(self.task_params.map_scales)):
            outs['ego_goal_imgs_{:d}'.format(j)][i,:,:,:,t] = 1.

    # Incremental locs and theta (for map warping), always in the original scale
    # of the map, the subequent steps in the tf code scale appropriately.
    # Scaling is done by just multiplying incremental_locs appropriately.
    if self.task_params.outputs.egomotion:
      if step_number == 0:
        # Zero Ego Motion
        incremental_locs = np.zeros((self.task_params.batch_size, 1, 2), dtype=np.float32)
        incremental_thetas = np.zeros((self.task_params.batch_size, 1, 1), dtype=np.float32)
      else:
        previous_nodes = self.task.nodes[self.episode.history[:,step_number-1], :]*1
        loc, _, _, theta = self.get_loc_axis(current_nodes,
                                             delta_theta=self.task.delta_theta,
                                             perturb=perturbs[:,step_number,:])
        previous_loc, _, _, previous_theta = self.get_loc_axis(
            previous_nodes, delta_theta=self.task.delta_theta,
            perturb=perturbs[:,step_number-1,:])

        incremental_locs_ = np.reshape(loc-previous_loc, [self.task_params.batch_size, 1, -1])

        t = -np.pi/2+np.reshape(theta*1, [self.task_params.batch_size, 1, -1])
        incremental_locs = incremental_locs_*1
        incremental_locs[:,:,0] = np.sum(incremental_locs_ *
                                         np.concatenate((np.cos(t), np.sin(t)),
                                                        axis=-1), axis=-1)
        incremental_locs[:,:,1] = np.sum(incremental_locs_ *
                                         np.concatenate((np.cos(t+np.pi/2),
                                                         np.sin(t+np.pi/2)),
                                                        axis=-1), axis=-1)
        incremental_thetas = np.reshape(theta-previous_theta,
                                        [self.task_params.batch_size, 1, -1])
      outs['incremental_locs'] = incremental_locs
      outs['incremental_thetas'] = incremental_thetas

    if self.task_params.outputs.visit_count:
      # Output the visit count for this state, how many times has the current
      # state been visited, and how far in the history was the last visit
      # (except this one)
      visit_count = np.zeros((self.task_params.batch_size, 1), dtype=np.int32)
      last_visit = -np.ones((self.task_params.batch_size, 1), dtype=np.int32)
      if step_number >= 1:
        h = self.episode.history[:,:(step_number)]
        visit_count[:,0] = np.sum(h == np.array(current_node_ids).reshape([-1,1]),
                                  axis=1)
        last_visit[:,0] = np.argmax(h[:,::-1] == np.array(current_node_ids).reshape([-1,1]),
                                    axis=1) + 1
        last_visit[visit_count == 0] = -1 # -1 if not visited.
      outs['visit_count'] = np.expand_dims(visit_count, axis=1)
      outs['last_visit'] = np.expand_dims(last_visit, axis=1)
    return outs

  def get_features_name(self):
    f = []
    if self.task_params.outputs.images:
      f.append('imgs')
    if self.task_params.outputs.rel_goal_loc:
      f.append('rel_goal_loc')
    if self.task_params.outputs.loc_on_map:
      f.append('loc_on_map')
    if self.task_params.outputs.gt_dist_to_goal:
      f.append('gt_dist_to_goal')
    if self.task_params.outputs.ego_maps:
      for i in range(len(self.task_params.map_scales)):
        f.append('ego_maps_{:d}'.format(i))
    if self.task_params.outputs.readout_maps:
      for i in range(len(self.task_params.readout_maps_scales)):
        f.append('readout_maps_{:d}'.format(i))
    if self.task_params.outputs.ego_goal_imgs:
      for i in range(len(self.task_params.map_scales)):
        f.append('ego_goal_imgs_{:d}'.format(i))
    if self.task_params.outputs.egomotion:
      f.append('incremental_locs')
      f.append('incremental_thetas')
    if self.task_params.outputs.visit_count:
      f.append('visit_count')
      f.append('last_visit')
    if self.task_params.outputs.analytical_counts:
      for i in range(len(self.task_params.analytical_counts.map_sizes)):
        f.append('analytical_counts_{:d}'.format(i))
    if self.task_params.outputs.node_ids:
      f.append('node_ids')
      f.append('perturbs')
    return f

  def pre_features(self, inputs):
    if self.task_params.outputs.images:
      inputs['imgs'] = image_pre(inputs['imgs'], self.task_params.modalities)
    return inputs

class BuildingMultiplexer():
  def __init__(self, args, task_number):
    params = vars(args)
    for k in params.keys():
      setattr(self, k, params[k])
    self.task_number = task_number
    self._pick_data(task_number)
    logging.info('Env Class: %s.', self.env_class)
    if self.task_params.task == 'planning':
      self._setup_planner()
    elif self.task_params.task == 'mapping':
      self._setup_mapper()
    elif self.task_params.task == 'map+plan':
      self._setup_mapper()
    else:
      logging.error('Undefined task: %s'.format(self.task_params.task))

  def _pick_data(self, task_number):
    logging.error('Input Building Names: %s', self.building_names)
    self.flip = [np.mod(task_number / len(self.building_names), 2) == 1]
    id = np.mod(task_number, len(self.building_names))
    self.building_names = [self.building_names[id]]
    self.task_params.building_seed = task_number
    logging.error('BuildingMultiplexer: Picked Building Name: %s', self.building_names)
    self.building_names = self.building_names[0].split('+')
    self.flip = [self.flip[0] for _ in self.building_names]
    logging.error('BuildingMultiplexer: Picked Building Name: %s', self.building_names)
    logging.error('BuildingMultiplexer: Flipping Buildings: %s', self.flip)
    logging.error('BuildingMultiplexer: Set building_seed: %d', self.task_params.building_seed)
    self.num_buildings = len(self.building_names)
    logging.error('BuildingMultiplexer: Num buildings: %d', self.num_buildings)

  def _setup_planner(self):
    # Load building env class.
    self.buildings = []
    for i, building_name in enumerate(self.building_names):
      b = self.env_class(robot=self.robot, env=self.env,
                         task_params=self.task_params,
                         building_name=building_name, flip=self.flip[i],
                         logdir=self.logdir, building_loader=self.dataset)
      self.buildings.append(b)

  def _setup_mapper(self):
    # Set up the renderer.
    cp = self.camera_param
    rgb_shader, d_shader = sru.get_shaders(cp.modalities)
    r_obj = SwiftshaderRenderer()
    r_obj.init_display(width=cp.width, height=cp.height, fov=cp.fov,
                       z_near=cp.z_near, z_far=cp.z_far, rgb_shader=rgb_shader,
                       d_shader=d_shader)
    self.r_obj = r_obj
    r_obj.clear_scene()

    # Load building env class.
    self.buildings = []
    wt = []
    for i, building_name in enumerate(self.building_names):
      b = self.env_class(robot=self.robot, env=self.env,
                         task_params=self.task_params,
                         building_name=building_name, flip=self.flip[i],
                         logdir=self.logdir, building_loader=self.dataset,
                         r_obj=r_obj)
      wt.append(b.get_weight())
      b.load_building_into_scene()
      b.set_building_visibility(False)
      self.buildings.append(b)
    wt = np.array(wt).astype(np.float32)
    wt = wt / np.sum(wt+0.0001)
    self.building_sampling_weights = wt

  def sample_building(self, rng):
    if self.num_buildings == 1:
      building_id = rng.choice(range(len(self.building_names)))
    else:
      building_id = rng.choice(self.num_buildings,
                               p=self.building_sampling_weights)
    b = self.buildings[building_id]
    instances = b._gen_rng(rng)
    self._building_id = building_id
    return self.buildings[building_id], instances

  def sample_env(self, rngs):
    rng = rngs[0];
    if self.num_buildings == 1:
      building_id = rng.choice(range(len(self.building_names)))
    else:
      building_id = rng.choice(self.num_buildings,
                               p=self.building_sampling_weights)
    return self.buildings[building_id]

  def pre(self, inputs):
    return self.buildings[self._building_id].pre(inputs)
  
  def __del__(self):
    self.r_obj.clear_scene()
    logging.error('Clearing scene.')