File size: 6,936 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Utility functions for setting up the CMP graph.
"""

import os, numpy as np
import matplotlib.pyplot as plt


import tensorflow as tf

from tensorflow.contrib import slim
from tensorflow.contrib.slim import arg_scope
import logging
from src import utils
import src.file_utils as fu
from tfcode import tf_utils

resnet_v2 = tf_utils.resnet_v2
custom_residual_block = tf_utils.custom_residual_block

def value_iteration_network(
    fr, num_iters, val_neurons, action_neurons, kernel_size, share_wts=False,
    name='vin', wt_decay=0.0001, activation_fn=None, shape_aware=False):
  """
  Constructs a Value Iteration Network, convolutions and max pooling across
  channels.
  Input:
    fr:             NxWxHxC
    val_neurons:    Number of channels for maintaining the value.
    action_neurons: Computes action_neurons * val_neurons at each iteration to
                    max pool over.
  Output:
    value image:  NxHxWx(val_neurons)
  """
  init_var = np.sqrt(2.0/(kernel_size**2)/(val_neurons*action_neurons))
  vals = []
  with tf.variable_scope(name) as varscope:
    if shape_aware == False:
      fr_shape = tf.unstack(tf.shape(fr))
      val_shape = tf.stack(fr_shape[:-1] + [val_neurons])
      val = tf.zeros(val_shape, name='val_init')
    else:
      val = tf.expand_dims(tf.zeros_like(fr[:,:,:,0]), dim=-1) * \
          tf.constant(0., dtype=tf.float32, shape=[1,1,1,val_neurons])
      val_shape = tf.shape(val)
    vals.append(val)
    for i in range(num_iters):
      if share_wts:
        # The first Value Iteration maybe special, so it can have its own
        # paramterss.
        scope = 'conv'
        if i == 0: scope = 'conv_0'
        if i > 1: varscope.reuse_variables()
      else:
        scope = 'conv_{:d}'.format(i)
      val = slim.conv2d(tf.concat([val, fr], 3, name='concat_{:d}'.format(i)),
                        num_outputs=action_neurons*val_neurons,
                        kernel_size=kernel_size, stride=1, activation_fn=activation_fn,
                        scope=scope, normalizer_fn=None,
                        weights_regularizer=slim.l2_regularizer(wt_decay),
                        weights_initializer=tf.random_normal_initializer(stddev=init_var),
                        biases_initializer=tf.zeros_initializer())
      val = tf.reshape(val, [-1, action_neurons*val_neurons, 1, 1],
                       name='re_{:d}'.format(i))
      val = slim.max_pool2d(val, kernel_size=[action_neurons,1],
                            stride=[action_neurons,1], padding='VALID',
                            scope='val_{:d}'.format(i))
      val = tf.reshape(val, val_shape, name='unre_{:d}'.format(i))
      vals.append(val)
  return val, vals


def rotate_preds(loc_on_map, relative_theta, map_size, preds,
                 output_valid_mask):
  with tf.name_scope('rotate'):
    flow_op = tf_utils.get_flow(loc_on_map, relative_theta, map_size=map_size)
    if type(preds) != list:
      rotated_preds, valid_mask_warps = tf_utils.dense_resample(preds, flow_op,
                                                                output_valid_mask)
    else:
      rotated_preds = [] ;valid_mask_warps = []
      for pred in preds:
        rotated_pred, valid_mask_warp = tf_utils.dense_resample(pred, flow_op,
                                                                output_valid_mask)
        rotated_preds.append(rotated_pred)
        valid_mask_warps.append(valid_mask_warp)
  return rotated_preds, valid_mask_warps

def get_visual_frustum(map_size, shape_like, expand_dims=[0,0]):
  with tf.name_scope('visual_frustum'):
    l = np.tril(np.ones(map_size)) ;l = l + l[:,::-1]
    l = (l == 2).astype(np.float32)
    for e in expand_dims:
      l = np.expand_dims(l, axis=e)
    confs_probs = tf.constant(l, dtype=tf.float32)
    confs_probs = tf.ones_like(shape_like, dtype=tf.float32) * confs_probs
  return confs_probs

def deconv(x, is_training, wt_decay, neurons, strides, layers_per_block,
            kernel_size, conv_fn, name, offset=0):
  """Generates a up sampling network with residual connections. 
  """
  batch_norm_param = {'center': True, 'scale': True,
                      'activation_fn': tf.nn.relu,
                      'is_training': is_training}
  outs = []
  for i, (neuron, stride) in enumerate(zip(neurons, strides)):
    for s in range(layers_per_block):
      scope = '{:s}_{:d}_{:d}'.format(name, i+1+offset,s+1)
      x = custom_residual_block(x, neuron, kernel_size, stride, scope,
                                is_training, wt_decay, use_residual=True,
                                residual_stride_conv=True, conv_fn=conv_fn,
                                batch_norm_param=batch_norm_param)
      stride = 1
    outs.append((x,True))
  return x, outs

def fr_v2(x, output_neurons, inside_neurons, is_training, name='fr',
          wt_decay=0.0001, stride=1, updates_collections=tf.GraphKeys.UPDATE_OPS):
  """Performs fusion of information between the map and the reward map.
  Inputs
    x:   NxHxWxC1

  Outputs
    fr map:     NxHxWx(output_neurons)
  """
  if type(stride) != list:
    stride = [stride]
  with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope(
      is_training=is_training, weight_decay=wt_decay)):
    with slim.arg_scope([slim.batch_norm], updates_collections=updates_collections) as arg_sc:
      # Change the updates_collections for the conv normalizer_params to None
      for i in range(len(arg_sc.keys())):
        if 'convolution' in arg_sc.keys()[i]:
          arg_sc.values()[i]['normalizer_params']['updates_collections'] = updates_collections
      with slim.arg_scope(arg_sc):
        bottleneck = resnet_v2.bottleneck
        blocks = []
        for i, s in enumerate(stride):
          b = resnet_v2.resnet_utils.Block(
              'block{:d}'.format(i + 1), bottleneck, [{
                  'depth': output_neurons,
                  'depth_bottleneck': inside_neurons,
                  'stride': stride[i]
              }])
          blocks.append(b)
        x, outs = resnet_v2.resnet_v2(x, blocks, num_classes=None, global_pool=False,
                                     output_stride=None, include_root_block=False,
                                     reuse=False, scope=name)
  return x, outs