Spaces:
Running
Running
File size: 2,501 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run training and evaluation for CVT text models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from base import configure
from base import utils
from training import trainer
from training import training_progress
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('mode', 'train', '"train" or "eval')
tf.app.flags.DEFINE_string('model_name', 'default_model',
'A name identifying the model being '
'trained/evaluated')
def main():
utils.heading('SETUP')
config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name)
config.write()
with tf.Graph().as_default() as graph:
model_trainer = trainer.Trainer(config)
summary_writer = tf.summary.FileWriter(config.summaries_dir)
checkpoints_saver = tf.train.Saver(max_to_keep=1)
best_model_saver = tf.train.Saver(max_to_keep=1)
init_op = tf.global_variables_initializer()
graph.finalize()
with tf.Session() as sess:
sess.run(init_op)
progress = training_progress.TrainingProgress(
config, sess, checkpoints_saver, best_model_saver,
config.mode == 'train')
utils.log()
if config.mode == 'train':
utils.heading('START TRAINING ({:})'.format(config.model_name))
model_trainer.train(sess, progress, summary_writer)
elif config.mode == 'eval':
utils.heading('RUN EVALUATION ({:})'.format(config.model_name))
progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
config.checkpoints_dir))
model_trainer.evaluate_all_tasks(sess, summary_writer, None)
else:
raise ValueError('Mode must be "train" or "eval"')
if __name__ == '__main__':
main()
|