File size: 5,474 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Runs training for CVT text models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import bisect
import time
import numpy as np
import tensorflow as tf

from base import utils
from model import multitask_model
from task_specific import task_definitions


class Trainer(object):
  def __init__(self, config):
    self._config = config
    self.tasks = [task_definitions.get_task(self._config, task_name)
                  for task_name in self._config.task_names]

    utils.log('Loading Pretrained Embeddings')
    pretrained_embeddings = utils.load_cpickle(self._config.word_embeddings)

    utils.log('Building Model')
    self._model = multitask_model.Model(
        self._config, pretrained_embeddings, self.tasks)
    utils.log()

  def train(self, sess, progress, summary_writer):
    heading = lambda s: utils.heading(s, '(' + self._config.model_name + ')')
    trained_on_sentences = 0
    start_time = time.time()
    unsupervised_loss_total, unsupervised_loss_count = 0, 0
    supervised_loss_total, supervised_loss_count = 0, 0
    for mb in self._get_training_mbs(progress.unlabeled_data_reader):
      if mb.task_name != 'unlabeled':
        loss = self._model.train_labeled(sess, mb)
        supervised_loss_total += loss
        supervised_loss_count += 1

      if mb.task_name == 'unlabeled':
        self._model.run_teacher(sess, mb)
        loss = self._model.train_unlabeled(sess, mb)
        unsupervised_loss_total += loss
        unsupervised_loss_count += 1
        mb.teacher_predictions.clear()

      trained_on_sentences += mb.size
      global_step = self._model.get_global_step(sess)

      if global_step % self._config.print_every == 0:
        utils.log('step {:} - '
                  'supervised loss: {:.2f} - '
                  'unsupervised loss: {:.2f} - '
                  '{:.1f} sentences per second'.format(
            global_step,
            supervised_loss_total / max(1, supervised_loss_count),
            unsupervised_loss_total / max(1, unsupervised_loss_count),
            trained_on_sentences / (time.time() - start_time)))
        unsupervised_loss_total, unsupervised_loss_count = 0, 0
        supervised_loss_total, supervised_loss_count = 0, 0

      if global_step % self._config.eval_dev_every == 0:
        heading('EVAL ON DEV')
        self.evaluate_all_tasks(sess, summary_writer, progress.history)
        progress.save_if_best_dev_model(sess, global_step)
        utils.log()

      if global_step % self._config.eval_train_every == 0:
        heading('EVAL ON TRAIN')
        self.evaluate_all_tasks(sess, summary_writer, progress.history, True)
        utils.log()

      if global_step % self._config.save_model_every == 0:
        heading('CHECKPOINTING MODEL')
        progress.write(sess, global_step)
        utils.log()

  def evaluate_all_tasks(self, sess, summary_writer, history, train_set=False):
    for task in self.tasks:
      results = self._evaluate_task(sess, task, summary_writer, train_set)
      if history is not None:
        results.append(('step', self._model.get_global_step(sess)))
        history.append(results)
    if history is not None:
      utils.write_cpickle(history, self._config.history_file)

  def _evaluate_task(self, sess, task, summary_writer, train_set):
    scorer = task.get_scorer()
    data = task.train_set if train_set else task.val_set
    for i, mb in enumerate(data.get_minibatches(self._config.test_batch_size)):
      loss, batch_preds = self._model.test(sess, mb)
      scorer.update(mb.examples, batch_preds, loss)

    results = scorer.get_results(task.name +
                                 ('_train_' if train_set else '_dev_'))
    utils.log(task.name.upper() + ': ' + scorer.results_str())
    write_summary(summary_writer, results,
                  global_step=self._model.get_global_step(sess))
    return results

  def _get_training_mbs(self, unlabeled_data_reader):
    datasets = [task.train_set for task in self.tasks]
    weights = [np.sqrt(dataset.size) for dataset in datasets]
    thresholds = np.cumsum([w / np.sum(weights) for w in weights])

    labeled_mbs = [dataset.endless_minibatches(self._config.train_batch_size)
                   for dataset in datasets]
    unlabeled_mbs = unlabeled_data_reader.endless_minibatches()
    while True:
      dataset_ind = bisect.bisect(thresholds, np.random.random())
      yield next(labeled_mbs[dataset_ind])
      if self._config.is_semisup:
        yield next(unlabeled_mbs)


def write_summary(writer, results, global_step):
  for k, v in results:
    if 'f1' in k or 'acc' in k or 'loss' in k:
      writer.add_summary(tf.Summary(
          value=[tf.Summary.Value(tag=k, simple_value=v)]), global_step)
  writer.flush()