Spaces:
Running
Running
File size: 11,156 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides flags that are common to scripts.
Common flags from train/eval/vis/export_model.py are collected in this script.
"""
import collections
import copy
import json
import tensorflow as tf
flags = tf.app.flags
# Flags for input preprocessing.
flags.DEFINE_integer('min_resize_value', None,
'Desired size of the smaller image side.')
flags.DEFINE_integer('max_resize_value', None,
'Maximum allowed size of the larger image side.')
flags.DEFINE_integer('resize_factor', None,
'Resized dimensions are multiple of factor plus one.')
flags.DEFINE_boolean('keep_aspect_ratio', True,
'Keep aspect ratio after resizing or not.')
# Model dependent flags.
flags.DEFINE_integer('logits_kernel_size', 1,
'The kernel size for the convolutional kernel that '
'generates logits.')
# When using 'mobilent_v2', we set atrous_rates = decoder_output_stride = None.
# When using 'xception_65' or 'resnet_v1' model variants, we set
# atrous_rates = [6, 12, 18] (output stride 16) and decoder_output_stride = 4.
# See core/feature_extractor.py for supported model variants.
flags.DEFINE_string('model_variant', 'mobilenet_v2', 'DeepLab model variant.')
flags.DEFINE_multi_float('image_pyramid', None,
'Input scales for multi-scale feature extraction.')
flags.DEFINE_boolean('add_image_level_feature', True,
'Add image level feature.')
flags.DEFINE_list(
'image_pooling_crop_size', None,
'Image pooling crop size [height, width] used in the ASPP module. When '
'value is None, the model performs image pooling with "crop_size". This'
'flag is useful when one likes to use different image pooling sizes.')
flags.DEFINE_list(
'image_pooling_stride', '1,1',
'Image pooling stride [height, width] used in the ASPP image pooling. ')
flags.DEFINE_boolean('aspp_with_batch_norm', True,
'Use batch norm parameters for ASPP or not.')
flags.DEFINE_boolean('aspp_with_separable_conv', True,
'Use separable convolution for ASPP or not.')
# Defaults to None. Set multi_grid = [1, 2, 4] when using provided
# 'resnet_v1_{50,101}_beta' checkpoints.
flags.DEFINE_multi_integer('multi_grid', None,
'Employ a hierarchy of atrous rates for ResNet.')
flags.DEFINE_float('depth_multiplier', 1.0,
'Multiplier for the depth (number of channels) for all '
'convolution ops used in MobileNet.')
flags.DEFINE_integer('divisible_by', None,
'An integer that ensures the layer # channels are '
'divisible by this value. Used in MobileNet.')
# For `xception_65`, use decoder_output_stride = 4. For `mobilenet_v2`, use
# decoder_output_stride = None.
flags.DEFINE_list('decoder_output_stride', None,
'Comma-separated list of strings with the number specifying '
'output stride of low-level features at each network level.'
'Current semantic segmentation implementation assumes at '
'most one output stride (i.e., either None or a list with '
'only one element.')
flags.DEFINE_boolean('decoder_use_separable_conv', True,
'Employ separable convolution for decoder or not.')
flags.DEFINE_enum('merge_method', 'max', ['max', 'avg'],
'Scheme to merge multi scale features.')
flags.DEFINE_boolean(
'prediction_with_upsampled_logits', True,
'When performing prediction, there are two options: (1) bilinear '
'upsampling the logits followed by softmax, or (2) softmax followed by '
'bilinear upsampling.')
flags.DEFINE_string(
'dense_prediction_cell_json',
'',
'A JSON file that specifies the dense prediction cell.')
flags.DEFINE_integer(
'nas_stem_output_num_conv_filters', 20,
'Number of filters of the stem output tensor in NAS models.')
flags.DEFINE_bool('nas_use_classification_head', False,
'Use image classification head for NAS model variants.')
flags.DEFINE_bool('nas_remove_os32_stride', False,
'Remove the stride in the output stride 32 branch.')
flags.DEFINE_bool('use_bounded_activation', False,
'Whether or not to use bounded activations. Bounded '
'activations better lend themselves to quantized inference.')
flags.DEFINE_boolean('aspp_with_concat_projection', True,
'ASPP with concat projection.')
flags.DEFINE_boolean('aspp_with_squeeze_and_excitation', False,
'ASPP with squeeze and excitation.')
flags.DEFINE_integer('aspp_convs_filters', 256, 'ASPP convolution filters.')
flags.DEFINE_boolean('decoder_use_sum_merge', False,
'Decoder uses simply sum merge.')
flags.DEFINE_integer('decoder_filters', 256, 'Decoder filters.')
flags.DEFINE_boolean('decoder_output_is_logits', False,
'Use decoder output as logits or not.')
flags.DEFINE_boolean('image_se_uses_qsigmoid', False, 'Use q-sigmoid.')
flags.DEFINE_multi_float(
'label_weights', None,
'A list of label weights, each element represents the weight for the label '
'of its index, for example, label_weights = [0.1, 0.5] means the weight '
'for label 0 is 0.1 and the weight for label 1 is 0.5. If set as None, all '
'the labels have the same weight 1.0.')
flags.DEFINE_float('batch_norm_decay', 0.9997, 'Batchnorm decay.')
FLAGS = flags.FLAGS
# Constants
# Perform semantic segmentation predictions.
OUTPUT_TYPE = 'semantic'
# Semantic segmentation item names.
LABELS_CLASS = 'labels_class'
IMAGE = 'image'
HEIGHT = 'height'
WIDTH = 'width'
IMAGE_NAME = 'image_name'
LABEL = 'label'
ORIGINAL_IMAGE = 'original_image'
# Test set name.
TEST_SET = 'test'
class ModelOptions(
collections.namedtuple('ModelOptions', [
'outputs_to_num_classes',
'crop_size',
'atrous_rates',
'output_stride',
'preprocessed_images_dtype',
'merge_method',
'add_image_level_feature',
'image_pooling_crop_size',
'image_pooling_stride',
'aspp_with_batch_norm',
'aspp_with_separable_conv',
'multi_grid',
'decoder_output_stride',
'decoder_use_separable_conv',
'logits_kernel_size',
'model_variant',
'depth_multiplier',
'divisible_by',
'prediction_with_upsampled_logits',
'dense_prediction_cell_config',
'nas_architecture_options',
'use_bounded_activation',
'aspp_with_concat_projection',
'aspp_with_squeeze_and_excitation',
'aspp_convs_filters',
'decoder_use_sum_merge',
'decoder_filters',
'decoder_output_is_logits',
'image_se_uses_qsigmoid',
'label_weights',
'sync_batch_norm_method',
'batch_norm_decay',
])):
"""Immutable class to hold model options."""
__slots__ = ()
def __new__(cls,
outputs_to_num_classes,
crop_size=None,
atrous_rates=None,
output_stride=8,
preprocessed_images_dtype=tf.float32):
"""Constructor to set default values.
Args:
outputs_to_num_classes: A dictionary from output type to the number of
classes. For example, for the task of semantic segmentation with 21
semantic classes, we would have outputs_to_num_classes['semantic'] = 21.
crop_size: A tuple [crop_height, crop_width].
atrous_rates: A list of atrous convolution rates for ASPP.
output_stride: The ratio of input to output spatial resolution.
preprocessed_images_dtype: The type after the preprocessing function.
Returns:
A new ModelOptions instance.
"""
dense_prediction_cell_config = None
if FLAGS.dense_prediction_cell_json:
with tf.gfile.Open(FLAGS.dense_prediction_cell_json, 'r') as f:
dense_prediction_cell_config = json.load(f)
decoder_output_stride = None
if FLAGS.decoder_output_stride:
decoder_output_stride = [
int(x) for x in FLAGS.decoder_output_stride]
if sorted(decoder_output_stride, reverse=True) != decoder_output_stride:
raise ValueError('Decoder output stride need to be sorted in the '
'descending order.')
image_pooling_crop_size = None
if FLAGS.image_pooling_crop_size:
image_pooling_crop_size = [int(x) for x in FLAGS.image_pooling_crop_size]
image_pooling_stride = [1, 1]
if FLAGS.image_pooling_stride:
image_pooling_stride = [int(x) for x in FLAGS.image_pooling_stride]
label_weights = FLAGS.label_weights
if label_weights is None:
label_weights = 1.0
nas_architecture_options = {
'nas_stem_output_num_conv_filters': (
FLAGS.nas_stem_output_num_conv_filters),
'nas_use_classification_head': FLAGS.nas_use_classification_head,
'nas_remove_os32_stride': FLAGS.nas_remove_os32_stride,
}
return super(ModelOptions, cls).__new__(
cls, outputs_to_num_classes, crop_size, atrous_rates, output_stride,
preprocessed_images_dtype,
FLAGS.merge_method,
FLAGS.add_image_level_feature,
image_pooling_crop_size,
image_pooling_stride,
FLAGS.aspp_with_batch_norm,
FLAGS.aspp_with_separable_conv,
FLAGS.multi_grid,
decoder_output_stride,
FLAGS.decoder_use_separable_conv,
FLAGS.logits_kernel_size,
FLAGS.model_variant,
FLAGS.depth_multiplier,
FLAGS.divisible_by,
FLAGS.prediction_with_upsampled_logits,
dense_prediction_cell_config,
nas_architecture_options,
FLAGS.use_bounded_activation,
FLAGS.aspp_with_concat_projection,
FLAGS.aspp_with_squeeze_and_excitation,
FLAGS.aspp_convs_filters,
FLAGS.decoder_use_sum_merge,
FLAGS.decoder_filters,
FLAGS.decoder_output_is_logits,
FLAGS.image_se_uses_qsigmoid,
label_weights,
'None',
FLAGS.batch_norm_decay)
def __deepcopy__(self, memo):
return ModelOptions(copy.deepcopy(self.outputs_to_num_classes),
self.crop_size,
self.atrous_rates,
self.output_stride,
self.preprocessed_images_dtype)
|