Spaces:
Running
Running
File size: 5,456 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DeepLab model and some helper functions."""
import tensorflow as tf
from deeplab import common
from deeplab import model
class DeeplabModelTest(tf.test.TestCase):
def testWrongDeepLabVariant(self):
model_options = common.ModelOptions([])._replace(
model_variant='no_such_variant')
with self.assertRaises(ValueError):
model._get_logits(images=[], model_options=model_options)
def testBuildDeepLabv2(self):
batch_size = 2
crop_size = [41, 41]
# Test with two image_pyramids.
image_pyramids = [[1], [0.5, 1]]
# Test two model variants.
model_variants = ['xception_65', 'mobilenet_v2']
# Test with two output_types.
outputs_to_num_classes = {'semantic': 3,
'direction': 2}
expected_endpoints = [['merged_logits'],
['merged_logits',
'logits_0.50',
'logits_1.00']]
expected_num_logits = [1, 3]
for model_variant in model_variants:
model_options = common.ModelOptions(outputs_to_num_classes)._replace(
add_image_level_feature=False,
aspp_with_batch_norm=False,
aspp_with_separable_conv=False,
model_variant=model_variant)
for i, image_pyramid in enumerate(image_pyramids):
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g):
inputs = tf.random_uniform(
(batch_size, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs, model_options, image_pyramid=image_pyramid)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
self.assertListEqual(sorted(scales_to_logits.keys()),
sorted(expected_endpoints[i]))
# Expected number of logits = len(image_pyramid) + 1, since the
# last logits is merged from all the scales.
self.assertEqual(len(scales_to_logits), expected_num_logits[i])
def testForwardpassDeepLabv3plus(self):
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 3}
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16
)._replace(
add_image_level_feature=True,
aspp_with_batch_norm=True,
logits_kernel_size=1,
decoder_output_stride=[4],
model_variant='mobilenet_v2') # Employ MobileNetv2 for fast test.
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
inputs = tf.random_uniform(
(1, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_logits = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
sess.run(tf.global_variables_initializer())
outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)
# Check computed results for each output type.
for output in outputs_to_num_classes:
scales_to_logits = outputs_to_scales_to_logits[output]
# Expect only one output.
self.assertEqual(len(scales_to_logits), 1)
for logits in scales_to_logits.values():
self.assertTrue(logits.any())
def testBuildDeepLabWithDensePredictionCell(self):
batch_size = 1
crop_size = [33, 33]
outputs_to_num_classes = {'semantic': 2}
expected_endpoints = ['merged_logits']
dense_prediction_cell_config = [
{'kernel': 3, 'rate': [1, 6], 'op': 'conv', 'input': -1},
{'kernel': 3, 'rate': [18, 15], 'op': 'conv', 'input': 0},
]
model_options = common.ModelOptions(
outputs_to_num_classes,
crop_size,
output_stride=16)._replace(
aspp_with_batch_norm=True,
model_variant='mobilenet_v2',
dense_prediction_cell_config=dense_prediction_cell_config)
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g):
inputs = tf.random_uniform(
(batch_size, crop_size[0], crop_size[1], 3))
outputs_to_scales_to_model_results = model.multi_scale_logits(
inputs,
model_options,
image_pyramid=[1.0])
for output in outputs_to_num_classes:
scales_to_model_results = outputs_to_scales_to_model_results[output]
self.assertListEqual(
list(scales_to_model_results), expected_endpoints)
self.assertEqual(len(scales_to_model_results), 1)
if __name__ == '__main__':
tf.test.main()
|