Spaces:
Running
Running
File size: 26,894 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Script for training an RL agent using the UVF algorithm.
To run locally: See run_train.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import tensorflow as tf
slim = tf.contrib.slim
import gin.tf
# pylint: disable=unused-import
import train_utils
import agent as agent_
from agents import circular_buffer
from utils import utils as uvf_utils
from environments import create_maze_env
# pylint: enable=unused-import
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('goal_sample_strategy', 'sample',
'None, sample, FuN')
LOAD_PATH = None
def collect_experience(tf_env, agent, meta_agent, state_preprocess,
replay_buffer, meta_replay_buffer,
action_fn, meta_action_fn,
environment_steps, num_episodes, num_resets,
episode_rewards, episode_meta_rewards,
store_context,
disable_agent_reset):
"""Collect experience in a tf_env into a replay_buffer using action_fn.
Args:
tf_env: A TFEnvironment.
agent: A UVF agent.
meta_agent: A Meta Agent.
replay_buffer: A Replay buffer to collect experience in.
meta_replay_buffer: A Replay buffer to collect meta agent experience in.
action_fn: A function to produce actions given current state.
meta_action_fn: A function to produce meta actions given current state.
environment_steps: A variable to count the number of steps in the tf_env.
num_episodes: A variable to count the number of episodes.
num_resets: A variable to count the number of resets.
store_context: A boolean to check if store context in replay.
disable_agent_reset: A boolean that disables agent from resetting.
Returns:
A collect_experience_op that excute an action and store into the
replay_buffers
"""
tf_env.start_collect()
state = tf_env.current_obs()
state_repr = state_preprocess(state)
action = action_fn(state, context=None)
with tf.control_dependencies([state]):
transition_type, reward, discount = tf_env.step(action)
def increment_step():
return environment_steps.assign_add(1)
def increment_episode():
return num_episodes.assign_add(1)
def increment_reset():
return num_resets.assign_add(1)
def update_episode_rewards(context_reward, meta_reward, reset):
new_episode_rewards = tf.concat(
[episode_rewards[:1] + context_reward, episode_rewards[1:]], 0)
new_episode_meta_rewards = tf.concat(
[episode_meta_rewards[:1] + meta_reward,
episode_meta_rewards[1:]], 0)
return tf.group(
episode_rewards.assign(
tf.cond(reset,
lambda: tf.concat([[0.], episode_rewards[:-1]], 0),
lambda: new_episode_rewards)),
episode_meta_rewards.assign(
tf.cond(reset,
lambda: tf.concat([[0.], episode_meta_rewards[:-1]], 0),
lambda: new_episode_meta_rewards)))
def no_op_int():
return tf.constant(0, dtype=tf.int64)
step_cond = agent.step_cond_fn(state, action,
transition_type,
environment_steps, num_episodes)
reset_episode_cond = agent.reset_episode_cond_fn(
state, action,
transition_type, environment_steps, num_episodes)
reset_env_cond = agent.reset_env_cond_fn(state, action,
transition_type,
environment_steps, num_episodes)
increment_step_op = tf.cond(step_cond, increment_step, no_op_int)
increment_episode_op = tf.cond(reset_episode_cond, increment_episode,
no_op_int)
increment_reset_op = tf.cond(reset_env_cond, increment_reset, no_op_int)
increment_op = tf.group(increment_step_op, increment_episode_op,
increment_reset_op)
with tf.control_dependencies([increment_op, reward, discount]):
next_state = tf_env.current_obs()
next_state_repr = state_preprocess(next_state)
next_reset_episode_cond = tf.logical_or(
agent.reset_episode_cond_fn(
state, action,
transition_type, environment_steps, num_episodes),
tf.equal(discount, 0.0))
if store_context:
context = [tf.identity(var) + tf.zeros_like(var) for var in agent.context_vars]
meta_context = [tf.identity(var) + tf.zeros_like(var) for var in meta_agent.context_vars]
else:
context = []
meta_context = []
with tf.control_dependencies([next_state] + context + meta_context):
if disable_agent_reset:
collect_experience_ops = [tf.no_op()] # don't reset agent
else:
collect_experience_ops = agent.cond_begin_episode_op(
tf.logical_not(reset_episode_cond),
[state, action, reward, next_state,
state_repr, next_state_repr],
mode='explore', meta_action_fn=meta_action_fn)
context_reward, meta_reward = collect_experience_ops
collect_experience_ops = list(collect_experience_ops)
collect_experience_ops.append(
update_episode_rewards(tf.reduce_sum(context_reward), meta_reward,
reset_episode_cond))
meta_action_every_n = agent.tf_context.meta_action_every_n
with tf.control_dependencies(collect_experience_ops):
transition = [state, action, reward, discount, next_state]
meta_action = tf.to_float(
tf.concat(context, -1)) # Meta agent action is low-level context
meta_end = tf.logical_and( # End of meta-transition.
tf.equal(agent.tf_context.t % meta_action_every_n, 1),
agent.tf_context.t > 1)
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
states_var = tf.get_variable('states_var',
[meta_action_every_n, state.shape[-1]],
state.dtype)
actions_var = tf.get_variable('actions_var',
[meta_action_every_n, action.shape[-1]],
action.dtype)
state_var = tf.get_variable('state_var', state.shape, state.dtype)
reward_var = tf.get_variable('reward_var', reward.shape, reward.dtype)
meta_action_var = tf.get_variable('meta_action_var',
meta_action.shape, meta_action.dtype)
meta_context_var = [
tf.get_variable('meta_context_var%d' % idx,
meta_context[idx].shape, meta_context[idx].dtype)
for idx in range(len(meta_context))]
actions_var_upd = tf.scatter_update(
actions_var, (agent.tf_context.t - 2) % meta_action_every_n, action)
with tf.control_dependencies([actions_var_upd]):
actions = tf.identity(actions_var) + tf.zeros_like(actions_var)
meta_reward = tf.identity(meta_reward) + tf.zeros_like(meta_reward)
meta_reward = tf.reshape(meta_reward, reward.shape)
reward = 0.1 * meta_reward
meta_transition = [state_var, meta_action_var,
reward_var + reward,
discount * (1 - tf.to_float(next_reset_episode_cond)),
next_state]
meta_transition.extend([states_var, actions])
if store_context: # store current and next context into replay
transition += context + list(agent.context_vars)
meta_transition += meta_context_var + list(meta_agent.context_vars)
meta_step_cond = tf.squeeze(tf.logical_and(step_cond, tf.logical_or(next_reset_episode_cond, meta_end)))
collect_experience_op = tf.group(
replay_buffer.maybe_add(transition, step_cond),
meta_replay_buffer.maybe_add(meta_transition, meta_step_cond),
)
with tf.control_dependencies([collect_experience_op]):
collect_experience_op = tf.cond(reset_env_cond,
tf_env.reset,
tf_env.current_time_step)
meta_period = tf.equal(agent.tf_context.t % meta_action_every_n, 1)
states_var_upd = tf.scatter_update(
states_var, (agent.tf_context.t - 1) % meta_action_every_n,
next_state)
state_var_upd = tf.assign(
state_var,
tf.cond(meta_period, lambda: next_state, lambda: state_var))
reward_var_upd = tf.assign(
reward_var,
tf.cond(meta_period,
lambda: tf.zeros_like(reward_var),
lambda: reward_var + reward))
meta_action = tf.to_float(tf.concat(agent.context_vars, -1))
meta_action_var_upd = tf.assign(
meta_action_var,
tf.cond(meta_period, lambda: meta_action, lambda: meta_action_var))
meta_context_var_upd = [
tf.assign(
meta_context_var[idx],
tf.cond(meta_period,
lambda: meta_agent.context_vars[idx],
lambda: meta_context_var[idx]))
for idx in range(len(meta_context))]
return tf.group(
collect_experience_op,
states_var_upd,
state_var_upd,
reward_var_upd,
meta_action_var_upd,
*meta_context_var_upd)
def sample_best_meta_actions(state_reprs, next_state_reprs, prev_meta_actions,
low_states, low_actions, low_state_reprs,
inverse_dynamics, uvf_agent, k=10):
"""Return meta-actions which approximately maximize low-level log-probs."""
sampled_actions = inverse_dynamics.sample(state_reprs, next_state_reprs, k, prev_meta_actions)
sampled_actions = tf.stop_gradient(sampled_actions)
sampled_log_probs = tf.reshape(uvf_agent.log_probs(
tf.tile(low_states, [k, 1, 1]),
tf.tile(low_actions, [k, 1, 1]),
tf.tile(low_state_reprs, [k, 1, 1]),
[tf.reshape(sampled_actions, [-1, sampled_actions.shape[-1]])]),
[k, low_states.shape[0],
low_states.shape[1], -1])
fitness = tf.reduce_sum(sampled_log_probs, [2, 3])
best_actions = tf.argmax(fitness, 0)
actions = tf.gather_nd(
sampled_actions,
tf.stack([best_actions,
tf.range(prev_meta_actions.shape[0], dtype=tf.int64)], -1))
return actions
@gin.configurable
def train_uvf(train_dir,
environment=None,
num_bin_actions=3,
agent_class=None,
meta_agent_class=None,
state_preprocess_class=None,
inverse_dynamics_class=None,
exp_action_wrapper=None,
replay_buffer=None,
meta_replay_buffer=None,
replay_num_steps=1,
meta_replay_num_steps=1,
critic_optimizer=None,
actor_optimizer=None,
meta_critic_optimizer=None,
meta_actor_optimizer=None,
repr_optimizer=None,
relabel_contexts=False,
meta_relabel_contexts=False,
batch_size=64,
repeat_size=0,
num_episodes_train=2000,
initial_episodes=2,
initial_steps=None,
num_updates_per_observation=1,
num_collect_per_update=1,
num_collect_per_meta_update=1,
gamma=1.0,
meta_gamma=1.0,
reward_scale_factor=1.0,
target_update_period=1,
should_stop_early=None,
clip_gradient_norm=0.0,
summarize_gradients=False,
debug_summaries=False,
log_every_n_steps=100,
prefetch_queue_capacity=2,
policy_save_dir='policy',
save_policy_every_n_steps=1000,
save_policy_interval_secs=0,
replay_context_ratio=0.0,
next_state_as_context_ratio=0.0,
state_index=0,
zero_timer_ratio=0.0,
timer_index=-1,
debug=False,
max_policies_to_save=None,
max_steps_per_episode=None,
load_path=LOAD_PATH):
"""Train an agent."""
tf_env = create_maze_env.TFPyEnvironment(environment)
observation_spec = [tf_env.observation_spec()]
action_spec = [tf_env.action_spec()]
max_steps_per_episode = max_steps_per_episode or tf_env.pyenv.max_episode_steps
assert max_steps_per_episode, 'max_steps_per_episode need to be set'
if initial_steps is None:
initial_steps = initial_episodes * max_steps_per_episode
if agent_class.ACTION_TYPE == 'discrete':
assert False
else:
assert agent_class.ACTION_TYPE == 'continuous'
assert agent_class.ACTION_TYPE == meta_agent_class.ACTION_TYPE
with tf.variable_scope('meta_agent'):
meta_agent = meta_agent_class(
observation_spec,
action_spec,
tf_env,
debug_summaries=debug_summaries)
meta_agent.set_replay(replay=meta_replay_buffer)
with tf.variable_scope('uvf_agent'):
uvf_agent = agent_class(
observation_spec,
action_spec,
tf_env,
debug_summaries=debug_summaries)
uvf_agent.set_meta_agent(agent=meta_agent)
uvf_agent.set_replay(replay=replay_buffer)
with tf.variable_scope('state_preprocess'):
state_preprocess = state_preprocess_class()
with tf.variable_scope('inverse_dynamics'):
inverse_dynamics = inverse_dynamics_class(
meta_agent.sub_context_as_action_specs[0])
# Create counter variables
global_step = tf.contrib.framework.get_or_create_global_step()
num_episodes = tf.Variable(0, dtype=tf.int64, name='num_episodes')
num_resets = tf.Variable(0, dtype=tf.int64, name='num_resets')
num_updates = tf.Variable(0, dtype=tf.int64, name='num_updates')
num_meta_updates = tf.Variable(0, dtype=tf.int64, name='num_meta_updates')
episode_rewards = tf.Variable([0.] * 100, name='episode_rewards')
episode_meta_rewards = tf.Variable([0.] * 100, name='episode_meta_rewards')
# Create counter variables summaries
train_utils.create_counter_summaries([
('environment_steps', global_step),
('num_episodes', num_episodes),
('num_resets', num_resets),
('num_updates', num_updates),
('num_meta_updates', num_meta_updates),
('replay_buffer_adds', replay_buffer.get_num_adds()),
('meta_replay_buffer_adds', meta_replay_buffer.get_num_adds()),
])
tf.summary.scalar('avg_episode_rewards',
tf.reduce_mean(episode_rewards[1:]))
tf.summary.scalar('avg_episode_meta_rewards',
tf.reduce_mean(episode_meta_rewards[1:]))
tf.summary.histogram('episode_rewards', episode_rewards[1:])
tf.summary.histogram('episode_meta_rewards', episode_meta_rewards[1:])
# Create init ops
action_fn = uvf_agent.action
action_fn = uvf_agent.add_noise_fn(action_fn, global_step=None)
meta_action_fn = meta_agent.action
meta_action_fn = meta_agent.add_noise_fn(meta_action_fn, global_step=None)
meta_actions_fn = meta_agent.actions
meta_actions_fn = meta_agent.add_noise_fn(meta_actions_fn, global_step=None)
init_collect_experience_op = collect_experience(
tf_env,
uvf_agent,
meta_agent,
state_preprocess,
replay_buffer,
meta_replay_buffer,
action_fn,
meta_action_fn,
environment_steps=global_step,
num_episodes=num_episodes,
num_resets=num_resets,
episode_rewards=episode_rewards,
episode_meta_rewards=episode_meta_rewards,
store_context=True,
disable_agent_reset=False,
)
# Create train ops
collect_experience_op = collect_experience(
tf_env,
uvf_agent,
meta_agent,
state_preprocess,
replay_buffer,
meta_replay_buffer,
action_fn,
meta_action_fn,
environment_steps=global_step,
num_episodes=num_episodes,
num_resets=num_resets,
episode_rewards=episode_rewards,
episode_meta_rewards=episode_meta_rewards,
store_context=True,
disable_agent_reset=False,
)
train_op_list = []
repr_train_op = tf.constant(0.0)
for mode in ['meta', 'nometa']:
if mode == 'meta':
agent = meta_agent
buff = meta_replay_buffer
critic_opt = meta_critic_optimizer
actor_opt = meta_actor_optimizer
relabel = meta_relabel_contexts
num_steps = meta_replay_num_steps
my_gamma = meta_gamma,
n_updates = num_meta_updates
else:
agent = uvf_agent
buff = replay_buffer
critic_opt = critic_optimizer
actor_opt = actor_optimizer
relabel = relabel_contexts
num_steps = replay_num_steps
my_gamma = gamma
n_updates = num_updates
with tf.name_scope(mode):
batch = buff.get_random_batch(batch_size, num_steps=num_steps)
states, actions, rewards, discounts, next_states = batch[:5]
with tf.name_scope('Reward'):
tf.summary.scalar('average_step_reward', tf.reduce_mean(rewards))
rewards *= reward_scale_factor
batch_queue = slim.prefetch_queue.prefetch_queue(
[states, actions, rewards, discounts, next_states] + batch[5:],
capacity=prefetch_queue_capacity,
name='batch_queue')
batch_dequeue = batch_queue.dequeue()
if repeat_size > 0:
batch_dequeue = [
tf.tile(batch, (repeat_size+1,) + (1,) * (batch.shape.ndims - 1))
for batch in batch_dequeue
]
batch_size *= (repeat_size + 1)
states, actions, rewards, discounts, next_states = batch_dequeue[:5]
if mode == 'meta':
low_states = batch_dequeue[5]
low_actions = batch_dequeue[6]
low_state_reprs = state_preprocess(low_states)
state_reprs = state_preprocess(states)
next_state_reprs = state_preprocess(next_states)
if mode == 'meta': # Re-label meta-action
prev_actions = actions
if FLAGS.goal_sample_strategy == 'None':
pass
elif FLAGS.goal_sample_strategy == 'FuN':
actions = inverse_dynamics.sample(state_reprs, next_state_reprs, 1, prev_actions, sc=0.1)
actions = tf.stop_gradient(actions)
elif FLAGS.goal_sample_strategy == 'sample':
actions = sample_best_meta_actions(state_reprs, next_state_reprs, prev_actions,
low_states, low_actions, low_state_reprs,
inverse_dynamics, uvf_agent, k=10)
else:
assert False
if state_preprocess.trainable and mode == 'meta':
# Representation learning is based on meta-transitions, but is trained
# along with low-level policy updates.
repr_loss, _, _ = state_preprocess.loss(states, next_states, low_actions, low_states)
repr_train_op = slim.learning.create_train_op(
repr_loss,
repr_optimizer,
global_step=None,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=state_preprocess.get_trainable_vars(),)
# Get contexts for training
contexts, next_contexts = agent.sample_contexts(
mode='train', batch_size=batch_size,
state=states, next_state=next_states,
)
if not relabel: # Re-label context (in the style of TDM or HER).
contexts, next_contexts = (
batch_dequeue[-2*len(contexts):-1*len(contexts)],
batch_dequeue[-1*len(contexts):])
merged_states = agent.merged_states(states, contexts)
merged_next_states = agent.merged_states(next_states, next_contexts)
if mode == 'nometa':
context_rewards, context_discounts = agent.compute_rewards(
'train', state_reprs, actions, rewards, next_state_reprs, contexts)
elif mode == 'meta': # Meta-agent uses sum of rewards, not context-specific rewards.
_, context_discounts = agent.compute_rewards(
'train', states, actions, rewards, next_states, contexts)
context_rewards = rewards
if agent.gamma_index is not None:
context_discounts *= tf.cast(
tf.reshape(contexts[agent.gamma_index], (-1,)),
dtype=context_discounts.dtype)
else: context_discounts *= my_gamma
critic_loss = agent.critic_loss(merged_states, actions,
context_rewards, context_discounts,
merged_next_states)
critic_loss = tf.reduce_mean(critic_loss)
actor_loss = agent.actor_loss(merged_states, actions,
context_rewards, context_discounts,
merged_next_states)
actor_loss *= tf.to_float( # Only update actor every N steps.
tf.equal(n_updates % target_update_period, 0))
critic_train_op = slim.learning.create_train_op(
critic_loss,
critic_opt,
global_step=n_updates,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=agent.get_trainable_critic_vars(),)
critic_train_op = uvf_utils.tf_print(
critic_train_op, [critic_train_op],
message='critic_loss',
print_freq=1000,
name='critic_loss')
train_op_list.append(critic_train_op)
if actor_loss is not None:
actor_train_op = slim.learning.create_train_op(
actor_loss,
actor_opt,
global_step=None,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=agent.get_trainable_actor_vars(),)
actor_train_op = uvf_utils.tf_print(
actor_train_op, [actor_train_op],
message='actor_loss',
print_freq=1000,
name='actor_loss')
train_op_list.append(actor_train_op)
assert len(train_op_list) == 4
# Update targets should happen after the networks have been updated.
with tf.control_dependencies(train_op_list[2:]):
update_targets_op = uvf_utils.periodically(
uvf_agent.update_targets, target_update_period, 'update_targets')
if meta_agent is not None:
with tf.control_dependencies(train_op_list[:2]):
update_meta_targets_op = uvf_utils.periodically(
meta_agent.update_targets, target_update_period, 'update_targets')
assert_op = tf.Assert( # Hack to get training to stop.
tf.less_equal(global_step, 200 + num_episodes_train * max_steps_per_episode),
[global_step])
with tf.control_dependencies([update_targets_op, assert_op]):
train_op = tf.add_n(train_op_list[2:], name='post_update_targets')
# Representation training steps on every low-level policy training step.
train_op += repr_train_op
with tf.control_dependencies([update_meta_targets_op, assert_op]):
meta_train_op = tf.add_n(train_op_list[:2],
name='post_update_meta_targets')
if debug_summaries:
train_.gen_debug_batch_summaries(batch)
slim.summaries.add_histogram_summaries(
uvf_agent.get_trainable_critic_vars(), 'critic_vars')
slim.summaries.add_histogram_summaries(
uvf_agent.get_trainable_actor_vars(), 'actor_vars')
train_ops = train_utils.TrainOps(train_op, meta_train_op,
collect_experience_op)
policy_save_path = os.path.join(train_dir, policy_save_dir, 'model.ckpt')
policy_vars = uvf_agent.get_actor_vars() + meta_agent.get_actor_vars() + [
global_step, num_episodes, num_resets
] + list(uvf_agent.context_vars) + list(meta_agent.context_vars) + state_preprocess.get_trainable_vars()
# add critic vars, since some test evaluation depends on them
policy_vars += uvf_agent.get_trainable_critic_vars() + meta_agent.get_trainable_critic_vars()
policy_saver = tf.train.Saver(
policy_vars, max_to_keep=max_policies_to_save, sharded=False)
lowlevel_vars = (uvf_agent.get_actor_vars() +
uvf_agent.get_trainable_critic_vars() +
state_preprocess.get_trainable_vars())
lowlevel_saver = tf.train.Saver(lowlevel_vars)
def policy_save_fn(sess):
policy_saver.save(
sess, policy_save_path, global_step=global_step, write_meta_graph=False)
if save_policy_interval_secs > 0:
tf.logging.info(
'Wait %d secs after save policy.' % save_policy_interval_secs)
time.sleep(save_policy_interval_secs)
train_step_fn = train_utils.TrainStep(
max_number_of_steps=num_episodes_train * max_steps_per_episode + 100,
num_updates_per_observation=num_updates_per_observation,
num_collect_per_update=num_collect_per_update,
num_collect_per_meta_update=num_collect_per_meta_update,
log_every_n_steps=log_every_n_steps,
policy_save_fn=policy_save_fn,
save_policy_every_n_steps=save_policy_every_n_steps,
should_stop_early=should_stop_early).train_step
local_init_op = tf.local_variables_initializer()
init_targets_op = tf.group(uvf_agent.update_targets(1.0),
meta_agent.update_targets(1.0))
def initialize_training_fn(sess):
"""Initialize training function."""
sess.run(local_init_op)
sess.run(init_targets_op)
if load_path:
tf.logging.info('Restoring low-level from %s' % load_path)
lowlevel_saver.restore(sess, load_path)
global_step_value = sess.run(global_step)
assert global_step_value == 0, 'Global step should be zero.'
collect_experience_call = sess.make_callable(
init_collect_experience_op)
for _ in range(initial_steps):
collect_experience_call()
train_saver = tf.train.Saver(max_to_keep=2, sharded=True)
tf.logging.info('train dir: %s', train_dir)
return slim.learning.train(
train_ops,
train_dir,
train_step_fn=train_step_fn,
save_interval_secs=FLAGS.save_interval_secs,
saver=train_saver,
log_every_n_steps=0,
global_step=global_step,
master="",
is_chief=(FLAGS.task == 0),
save_summaries_secs=FLAGS.save_summaries_secs,
init_fn=initialize_training_fn)
|