Spaces:
Running
Running
File size: 26,703 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training script for the FEELVOS model.
See model.py for more details and usage.
"""
import six
import tensorflow as tf
from feelvos import common
from feelvos import model
from feelvos.datasets import video_dataset
from feelvos.utils import embedding_utils
from feelvos.utils import train_utils
from feelvos.utils import video_input_generator
from deployment import model_deploy
slim = tf.contrib.slim
prefetch_queue = slim.prefetch_queue
flags = tf.app.flags
FLAGS = flags.FLAGS
# Settings for multi-GPUs/multi-replicas training.
flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy.')
flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.')
flags.DEFINE_integer('num_replicas', 1, 'Number of worker replicas.')
flags.DEFINE_integer('startup_delay_steps', 15,
'Number of training steps between replicas startup.')
flags.DEFINE_integer('num_ps_tasks', 0,
'The number of parameter servers. If the value is 0, then '
'the parameters are handled locally by the worker.')
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
flags.DEFINE_integer('task', 0, 'The task ID.')
# Settings for logging.
flags.DEFINE_string('train_logdir', None,
'Where the checkpoint and logs are stored.')
flags.DEFINE_integer('log_steps', 10,
'Display logging information at every log_steps.')
flags.DEFINE_integer('save_interval_secs', 1200,
'How often, in seconds, we save the model to disk.')
flags.DEFINE_integer('save_summaries_secs', 600,
'How often, in seconds, we compute the summaries.')
# Settings for training strategy.
flags.DEFINE_enum('learning_policy', 'poly', ['poly', 'step'],
'Learning rate policy for training.')
flags.DEFINE_float('base_learning_rate', 0.0007,
'The base learning rate for model training.')
flags.DEFINE_float('learning_rate_decay_factor', 0.1,
'The rate to decay the base learning rate.')
flags.DEFINE_integer('learning_rate_decay_step', 2000,
'Decay the base learning rate at a fixed step.')
flags.DEFINE_float('learning_power', 0.9,
'The power value used in the poly learning policy.')
flags.DEFINE_integer('training_number_of_steps', 200000,
'The number of steps used for training')
flags.DEFINE_float('momentum', 0.9, 'The momentum value to use')
flags.DEFINE_integer('train_batch_size', 6,
'The number of images in each batch during training.')
flags.DEFINE_integer('train_num_frames_per_video', 3,
'The number of frames used per video during training')
flags.DEFINE_float('weight_decay', 0.00004,
'The value of the weight decay for training.')
flags.DEFINE_multi_integer('train_crop_size', [465, 465],
'Image crop size [height, width] during training.')
flags.DEFINE_float('last_layer_gradient_multiplier', 1.0,
'The gradient multiplier for last layers, which is used to '
'boost the gradient of last layers if the value > 1.')
flags.DEFINE_boolean('upsample_logits', True,
'Upsample logits during training.')
flags.DEFINE_integer('batch_capacity_factor', 16, 'Batch capacity factor.')
flags.DEFINE_integer('num_readers', 1, 'Number of readers for data provider.')
flags.DEFINE_integer('batch_num_threads', 1, 'Batch number of threads.')
flags.DEFINE_integer('prefetch_queue_capacity_factor', 32,
'Prefetch queue capacity factor.')
flags.DEFINE_integer('prefetch_queue_num_threads', 1,
'Prefetch queue number of threads.')
flags.DEFINE_integer('train_max_neighbors_per_object', 1024,
'The maximum number of candidates for the nearest '
'neighbor query per object after subsampling')
# Settings for fine-tuning the network.
flags.DEFINE_string('tf_initial_checkpoint', None,
'The initial checkpoint in tensorflow format.')
flags.DEFINE_boolean('initialize_last_layer', False,
'Initialize the last layer.')
flags.DEFINE_boolean('last_layers_contain_logits_only', False,
'Only consider logits as last layers or not.')
flags.DEFINE_integer('slow_start_step', 0,
'Training model with small learning rate for few steps.')
flags.DEFINE_float('slow_start_learning_rate', 1e-4,
'Learning rate employed during slow start.')
flags.DEFINE_boolean('fine_tune_batch_norm', False,
'Fine tune the batch norm parameters or not.')
flags.DEFINE_float('min_scale_factor', 1.,
'Mininum scale factor for data augmentation.')
flags.DEFINE_float('max_scale_factor', 1.3,
'Maximum scale factor for data augmentation.')
flags.DEFINE_float('scale_factor_step_size', 0,
'Scale factor step size for data augmentation.')
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 8,
'The ratio of input to output spatial resolution.')
flags.DEFINE_boolean('sample_only_first_frame_for_finetuning', False,
'Whether to only sample the first frame during '
'fine-tuning. This should be False when using lucid data, '
'but True when fine-tuning on the first frame only. Only '
'has an effect if first_frame_finetuning is True.')
flags.DEFINE_multi_integer('first_frame_finetuning', [0],
'Whether to only sample the first frame for '
'fine-tuning.')
# Dataset settings.
flags.DEFINE_multi_string('dataset', [], 'Name of the segmentation datasets.')
flags.DEFINE_multi_float('dataset_sampling_probabilities', [],
'A list of probabilities to sample each of the '
'datasets.')
flags.DEFINE_string('train_split', 'train',
'Which split of the dataset to be used for training')
flags.DEFINE_multi_string('dataset_dir', [], 'Where the datasets reside.')
flags.DEFINE_multi_integer('three_frame_dataset', [0],
'Whether the dataset has exactly three frames per '
'video of which the first is to be used as reference'
' and the two others are consecutive frames to be '
'used as query frames.'
'Set true for pascal lucid data.')
flags.DEFINE_boolean('damage_initial_previous_frame_mask', False,
'Whether to artificially damage the initial previous '
'frame mask. Only has an effect if '
'also_attend_to_previous_frame is True.')
flags.DEFINE_float('top_k_percent_pixels', 0.15, 'Float in [0.0, 1.0].'
'When its value < 1.0, only compute the loss for the top k'
'percent pixels (e.g., the top 20% pixels). This is useful'
'for hard pixel mining.')
flags.DEFINE_integer('hard_example_mining_step', 100000,
'The training step in which the hard exampling mining '
'kicks off. Note that we gradually reduce the mining '
'percent to the top_k_percent_pixels. For example, if '
'hard_example_mining_step=100K and '
'top_k_percent_pixels=0.25, then mining percent will '
'gradually reduce from 100% to 25% until 100K steps '
'after which we only mine top 25% pixels. Only has an '
'effect if top_k_percent_pixels < 1.0')
def _build_deeplab(inputs_queue_or_samples, outputs_to_num_classes,
ignore_label):
"""Builds a clone of DeepLab.
Args:
inputs_queue_or_samples: A prefetch queue for images and labels, or
directly a dict of the samples.
outputs_to_num_classes: A map from output type to the number of classes.
For example, for the task of semantic segmentation with 21 semantic
classes, we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
Returns:
A map of maps from output_type (e.g., semantic prediction) to a
dictionary of multi-scale logits names to logits. For each output_type,
the dictionary has keys which correspond to the scales and values which
correspond to the logits. For example, if `scales` equals [1.0, 1.5],
then the keys would include 'merged_logits', 'logits_1.00' and
'logits_1.50'.
Raises:
ValueError: If classification_loss is not softmax, softmax_with_attention,
or triplet.
"""
if hasattr(inputs_queue_or_samples, 'dequeue'):
samples = inputs_queue_or_samples.dequeue()
else:
samples = inputs_queue_or_samples
train_crop_size = (None if 0 in FLAGS.train_crop_size else
FLAGS.train_crop_size)
model_options = common.VideoModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=train_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if model_options.classification_loss == 'softmax_with_attention':
clone_batch_size = FLAGS.train_batch_size // FLAGS.num_clones
# Create summaries of ground truth labels.
for n in range(clone_batch_size):
tf.summary.image(
'gt_label_%d' % n,
tf.cast(samples[common.LABEL][
n * FLAGS.train_num_frames_per_video:
(n + 1) * FLAGS.train_num_frames_per_video],
tf.uint8) * 32, max_outputs=FLAGS.train_num_frames_per_video)
if common.PRECEDING_FRAME_LABEL in samples:
preceding_frame_label = samples[common.PRECEDING_FRAME_LABEL]
init_softmax = []
for n in range(clone_batch_size):
init_softmax_n = embedding_utils.create_initial_softmax_from_labels(
preceding_frame_label[n, tf.newaxis],
samples[common.LABEL][n * FLAGS.train_num_frames_per_video,
tf.newaxis],
common.parse_decoder_output_stride(),
reduce_labels=True)
init_softmax_n = tf.squeeze(init_softmax_n, axis=0)
init_softmax.append(init_softmax_n)
tf.summary.image('preceding_frame_label',
tf.cast(preceding_frame_label[n, tf.newaxis],
tf.uint8) * 32)
else:
init_softmax = None
outputs_to_scales_to_logits = (
model.multi_scale_logits_with_nearest_neighbor_matching(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
reference_labels=samples[common.LABEL],
clone_batch_size=FLAGS.train_batch_size // FLAGS.num_clones,
num_frames_per_video=FLAGS.train_num_frames_per_video,
embedding_dimension=FLAGS.embedding_dimension,
max_neighbors_per_object=FLAGS.train_max_neighbors_per_object,
k_nearest_neighbors=FLAGS.k_nearest_neighbors,
use_softmax_feedback=FLAGS.use_softmax_feedback,
initial_softmax_feedback=init_softmax,
embedding_seg_feature_dimension=
FLAGS.embedding_seg_feature_dimension,
embedding_seg_n_layers=FLAGS.embedding_seg_n_layers,
embedding_seg_kernel_size=FLAGS.embedding_seg_kernel_size,
embedding_seg_atrous_rates=FLAGS.embedding_seg_atrous_rates,
normalize_nearest_neighbor_distances=
FLAGS.normalize_nearest_neighbor_distances,
also_attend_to_previous_frame=FLAGS.also_attend_to_previous_frame,
damage_initial_previous_frame_mask=
FLAGS.damage_initial_previous_frame_mask,
use_local_previous_frame_attention=
FLAGS.use_local_previous_frame_attention,
previous_frame_attention_window_size=
FLAGS.previous_frame_attention_window_size,
use_first_frame_matching=FLAGS.use_first_frame_matching
))
else:
outputs_to_scales_to_logits = model.multi_scale_logits_v2(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm)
if model_options.classification_loss == 'softmax':
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
scope=output)
elif model_options.classification_loss == 'triplet':
for output, _ in six.iteritems(outputs_to_num_classes):
train_utils.add_triplet_loss_for_each_scale(
FLAGS.train_batch_size // FLAGS.num_clones,
FLAGS.train_num_frames_per_video,
FLAGS.embedding_dimension, outputs_to_scales_to_logits[output],
samples[common.LABEL], scope=output)
elif model_options.classification_loss == 'softmax_with_attention':
labels = samples[common.LABEL]
batch_size = FLAGS.train_batch_size // FLAGS.num_clones
num_frames_per_video = FLAGS.train_num_frames_per_video
h, w = train_utils.resolve_shape(labels)[1:3]
labels = tf.reshape(labels, tf.stack(
[batch_size, num_frames_per_video, h, w, 1]))
# Strip the reference labels off.
if FLAGS.also_attend_to_previous_frame or FLAGS.use_softmax_feedback:
n_ref_frames = 2
else:
n_ref_frames = 1
labels = labels[:, n_ref_frames:]
# Merge batch and time dimensions.
labels = tf.reshape(labels, tf.stack(
[batch_size * (num_frames_per_video - n_ref_frames), h, w, 1]))
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_dynamic_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
labels,
ignore_label,
loss_weight=1.0,
upsample_logits=FLAGS.upsample_logits,
scope=output,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
hard_example_mining_step=FLAGS.hard_example_mining_step)
else:
raise ValueError('Only support softmax, softmax_with_attention'
' or triplet for classification_loss.')
return outputs_to_scales_to_logits
def main(unused_argv):
# Set up deployment (i.e., multi-GPUs and/or multi-replicas).
config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.num_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
with tf.Graph().as_default():
with tf.device(config.inputs_device()):
train_crop_size = (None if 0 in FLAGS.train_crop_size else
FLAGS.train_crop_size)
assert FLAGS.dataset
assert len(FLAGS.dataset) == len(FLAGS.dataset_dir)
if len(FLAGS.first_frame_finetuning) == 1:
first_frame_finetuning = (list(FLAGS.first_frame_finetuning)
* len(FLAGS.dataset))
else:
first_frame_finetuning = FLAGS.first_frame_finetuning
if len(FLAGS.three_frame_dataset) == 1:
three_frame_dataset = (list(FLAGS.three_frame_dataset)
* len(FLAGS.dataset))
else:
three_frame_dataset = FLAGS.three_frame_dataset
assert len(FLAGS.dataset) == len(first_frame_finetuning)
assert len(FLAGS.dataset) == len(three_frame_dataset)
datasets, samples_list = zip(
*[_get_dataset_and_samples(config, train_crop_size, dataset,
dataset_dir, bool(first_frame_finetuning_),
bool(three_frame_dataset_))
for dataset, dataset_dir, first_frame_finetuning_,
three_frame_dataset_ in zip(FLAGS.dataset, FLAGS.dataset_dir,
first_frame_finetuning,
three_frame_dataset)])
# Note that this way of doing things is wasteful since it will evaluate
# all branches but just use one of them. But let's do it anyway for now,
# since it's easy and will probably be fast enough.
dataset = datasets[0]
if len(samples_list) == 1:
samples = samples_list[0]
else:
probabilities = FLAGS.dataset_sampling_probabilities
if probabilities:
assert len(probabilities) == len(samples_list)
else:
# Default to uniform probabilities.
probabilities = [1.0 / len(samples_list) for _ in samples_list]
probabilities = tf.constant(probabilities)
logits = tf.log(probabilities[tf.newaxis])
rand_idx = tf.squeeze(tf.multinomial(logits, 1, output_dtype=tf.int32),
axis=[0, 1])
def wrap(x):
def f():
return x
return f
samples = tf.case({tf.equal(rand_idx, idx): wrap(s)
for idx, s in enumerate(samples_list)},
exclusive=True)
# Prefetch_queue requires the shape to be known at graph creation time.
# So we only use it if we crop to a fixed size.
if train_crop_size is None:
inputs_queue = samples
else:
inputs_queue = prefetch_queue.prefetch_queue(
samples,
capacity=FLAGS.prefetch_queue_capacity_factor*config.num_clones,
num_threads=FLAGS.prefetch_queue_num_threads)
# Create the global step on the device storing the variables.
with tf.device(config.variables_device()):
global_step = tf.train.get_or_create_global_step()
# Define the model and create clones.
model_fn = _build_deeplab
if FLAGS.classification_loss == 'triplet':
embedding_dim = FLAGS.embedding_dimension
output_type_to_dim = {'embedding': embedding_dim}
else:
output_type_to_dim = {common.OUTPUT_TYPE: dataset.num_classes}
model_args = (inputs_queue, output_type_to_dim, dataset.ignore_label)
clones = model_deploy.create_clones(config, model_fn, args=model_args)
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by model_fn.
first_clone_scope = config.clone_scope(0)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
# Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
# Add summaries for model variables.
for model_var in tf.contrib.framework.get_model_variables():
summaries.add(tf.summary.histogram(model_var.op.name, model_var))
# Add summaries for losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
# Build the optimizer based on the device specification.
with tf.device(config.optimizer_device()):
learning_rate = train_utils.get_model_learning_rate(
FLAGS.learning_policy,
FLAGS.base_learning_rate,
FLAGS.learning_rate_decay_step,
FLAGS.learning_rate_decay_factor,
FLAGS.training_number_of_steps,
FLAGS.learning_power,
FLAGS.slow_start_step,
FLAGS.slow_start_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum)
summaries.add(tf.summary.scalar('learning_rate', learning_rate))
startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps
with tf.device(config.variables_device()):
total_loss, grads_and_vars = model_deploy.optimize_clones(
clones, optimizer)
total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.')
summaries.add(tf.summary.scalar('total_loss', total_loss))
# Modify the gradients for biases and last layer variables.
last_layers = model.get_extra_layer_scopes(
FLAGS.last_layers_contain_logits_only)
grad_mult = train_utils.get_model_gradient_multipliers(
last_layers, FLAGS.last_layer_gradient_multiplier)
if grad_mult:
grads_and_vars = slim.learning.multiply_gradients(grads_and_vars,
grad_mult)
with tf.name_scope('grad_clipping'):
grads_and_vars = slim.learning.clip_gradient_norms(grads_and_vars, 5.0)
# Create histogram summaries for the gradients.
# We have too many summaries for mldash, so disable this one for now.
# for grad, var in grads_and_vars:
# summaries.add(tf.summary.histogram(
# var.name.replace(':0', '_0') + '/gradient', grad))
# Create gradient update op.
grad_updates = optimizer.apply_gradients(grads_and_vars,
global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops)
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(total_loss, name='train_op')
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone_scope))
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries))
# Soft placement allows placing on CPU ops without GPU implementation.
session_config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
# Start the training.
slim.learning.train(
train_tensor,
logdir=FLAGS.train_logdir,
log_every_n_steps=FLAGS.log_steps,
master=FLAGS.master,
number_of_steps=FLAGS.training_number_of_steps,
is_chief=(FLAGS.task == 0),
session_config=session_config,
startup_delay_steps=startup_delay_steps,
init_fn=train_utils.get_model_init_fn(FLAGS.train_logdir,
FLAGS.tf_initial_checkpoint,
FLAGS.initialize_last_layer,
last_layers,
ignore_missing_vars=True),
summary_op=summary_op,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs)
def _get_dataset_and_samples(config, train_crop_size, dataset_name,
dataset_dir, first_frame_finetuning,
three_frame_dataset):
"""Creates dataset object and samples dict of tensor.
Args:
config: A DeploymentConfig.
train_crop_size: Integer, the crop size used for training.
dataset_name: String, the name of the dataset.
dataset_dir: String, the directory of the dataset.
first_frame_finetuning: Boolean, whether the used dataset is a dataset
for first frame fine-tuning.
three_frame_dataset: Boolean, whether the dataset has exactly three frames
per video of which the first is to be used as reference and the two
others are consecutive frames to be used as query frames.
Returns:
dataset: An instance of slim Dataset.
samples: A dictionary of tensors for semantic segmentation.
"""
# Split the batch across GPUs.
assert FLAGS.train_batch_size % config.num_clones == 0, (
'Training batch size not divisble by number of clones (GPUs).')
clone_batch_size = FLAGS.train_batch_size / config.num_clones
if first_frame_finetuning:
train_split = 'val'
else:
train_split = FLAGS.train_split
data_type = 'tf_sequence_example'
# Get dataset-dependent information.
dataset = video_dataset.get_dataset(
dataset_name,
train_split,
dataset_dir=dataset_dir,
data_type=data_type)
tf.gfile.MakeDirs(FLAGS.train_logdir)
tf.logging.info('Training on %s set', train_split)
samples = video_input_generator.get(
dataset,
FLAGS.train_num_frames_per_video,
train_crop_size,
clone_batch_size,
num_readers=FLAGS.num_readers,
num_threads=FLAGS.batch_num_threads,
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
min_scale_factor=FLAGS.min_scale_factor,
max_scale_factor=FLAGS.max_scale_factor,
scale_factor_step_size=FLAGS.scale_factor_step_size,
dataset_split=FLAGS.train_split,
is_training=True,
model_variant=FLAGS.model_variant,
batch_capacity_factor=FLAGS.batch_capacity_factor,
decoder_output_stride=common.parse_decoder_output_stride(),
first_frame_finetuning=first_frame_finetuning,
sample_only_first_frame_for_finetuning=
FLAGS.sample_only_first_frame_for_finetuning,
sample_adjacent_and_consistent_query_frames=
FLAGS.sample_adjacent_and_consistent_query_frames or
FLAGS.use_softmax_feedback,
remap_labels_to_reference_frame=True,
three_frame_dataset=three_frame_dataset,
add_prev_frame_label=not FLAGS.also_attend_to_previous_frame
)
return dataset, samples
if __name__ == '__main__':
flags.mark_flag_as_required('train_logdir')
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
|