Spaces:
Running
Running
File size: 14,183 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# Copyright 2018 The TensorFlow Global Objectives Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility functions for the global objectives library."""
# Dependency imports
import tensorflow as tf
def weighted_sigmoid_cross_entropy_with_logits(labels,
logits,
positive_weights=1.0,
negative_weights=1.0,
name=None):
"""Computes a weighting of sigmoid cross entropy given `logits`.
Measures the weighted probability error in discrete classification tasks in
which classes are independent and not mutually exclusive. For instance, one
could perform multilabel classification where a picture can contain both an
elephant and a dog at the same time. The class weight multiplies the
different types of errors.
For brevity, let `x = logits`, `z = labels`, `c = positive_weights`,
`d = negative_weights` The
weighed logistic loss is
```
c * z * -log(sigmoid(x)) + d * (1 - z) * -log(1 - sigmoid(x))
= c * z * -log(1 / (1 + exp(-x))) - d * (1 - z) * log(exp(-x) / (1 + exp(-x)))
= c * z * log(1 + exp(-x)) + d * (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= c * z * log(1 + exp(-x)) + d * (1 - z) * (x + log(1 + exp(-x)))
= (1 - z) * x * d + (1 - z + c * z ) * log(1 + exp(-x))
= - d * x * z + d * x + (d - d * z + c * z ) * log(1 + exp(-x))
```
To ensure stability and avoid overflow, the implementation uses the identity
log(1 + exp(-x)) = max(0,-x) + log(1 + exp(-abs(x)))
and the result is computed as
```
= -d * x * z + d * x
+ (d - d * z + c * z ) * (max(0,-x) + log(1 + exp(-abs(x))))
```
Note that the loss is NOT an upper bound on the 0-1 loss, unless it is divided
by log(2).
Args:
labels: A `Tensor` of type `float32` or `float64`. `labels` can be a 2D
tensor with shape [batch_size, num_labels] or a 3D tensor with shape
[batch_size, num_labels, K].
logits: A `Tensor` of the same type and shape as `labels`. If `logits` has
shape [batch_size, num_labels, K], the loss is computed separately on each
slice [:, :, k] of `logits`.
positive_weights: A `Tensor` that holds positive weights and has the
following semantics according to its shape:
scalar - A global positive weight.
1D tensor - must be of size K, a weight for each 'attempt'
2D tensor - of size [num_labels, K'] where K' is either K or 1.
The `positive_weights` will be expanded to the left to match the
dimensions of logits and labels.
negative_weights: A `Tensor` that holds positive weight and has the
semantics identical to positive_weights.
name: A name for the operation (optional).
Returns:
A `Tensor` of the same shape as `logits` with the componentwise
weighted logistic losses.
"""
with tf.name_scope(
name,
'weighted_logistic_loss',
[logits, labels, positive_weights, negative_weights]) as name:
labels, logits, positive_weights, negative_weights = prepare_loss_args(
labels, logits, positive_weights, negative_weights)
softplus_term = tf.add(tf.maximum(-logits, 0.0),
tf.log(1.0 + tf.exp(-tf.abs(logits))))
weight_dependent_factor = (
negative_weights + (positive_weights - negative_weights) * labels)
return (negative_weights * (logits - labels * logits) +
weight_dependent_factor * softplus_term)
def weighted_hinge_loss(labels,
logits,
positive_weights=1.0,
negative_weights=1.0,
name=None):
"""Computes weighted hinge loss given logits `logits`.
The loss applies to multi-label classification tasks where labels are
independent and not mutually exclusive. See also
`weighted_sigmoid_cross_entropy_with_logits`.
Args:
labels: A `Tensor` of type `float32` or `float64`. Each entry must be
either 0 or 1. `labels` can be a 2D tensor with shape
[batch_size, num_labels] or a 3D tensor with shape
[batch_size, num_labels, K].
logits: A `Tensor` of the same type and shape as `labels`. If `logits` has
shape [batch_size, num_labels, K], the loss is computed separately on each
slice [:, :, k] of `logits`.
positive_weights: A `Tensor` that holds positive weights and has the
following semantics according to its shape:
scalar - A global positive weight.
1D tensor - must be of size K, a weight for each 'attempt'
2D tensor - of size [num_labels, K'] where K' is either K or 1.
The `positive_weights` will be expanded to the left to match the
dimensions of logits and labels.
negative_weights: A `Tensor` that holds positive weight and has the
semantics identical to positive_weights.
name: A name for the operation (optional).
Returns:
A `Tensor` of the same shape as `logits` with the componentwise
weighted hinge loss.
"""
with tf.name_scope(
name, 'weighted_hinge_loss',
[logits, labels, positive_weights, negative_weights]) as name:
labels, logits, positive_weights, negative_weights = prepare_loss_args(
labels, logits, positive_weights, negative_weights)
positives_term = positive_weights * labels * tf.maximum(1.0 - logits, 0)
negatives_term = (negative_weights * (1.0 - labels)
* tf.maximum(1.0 + logits, 0))
return positives_term + negatives_term
def weighted_surrogate_loss(labels,
logits,
surrogate_type='xent',
positive_weights=1.0,
negative_weights=1.0,
name=None):
"""Returns either weighted cross-entropy or hinge loss.
For example `surrogate_type` is 'xent' returns the weighted cross
entropy loss.
Args:
labels: A `Tensor` of type `float32` or `float64`. Each entry must be
between 0 and 1. `labels` can be a 2D tensor with shape
[batch_size, num_labels] or a 3D tensor with shape
[batch_size, num_labels, K].
logits: A `Tensor` of the same type and shape as `labels`. If `logits` has
shape [batch_size, num_labels, K], each slice [:, :, k] represents an
'attempt' to predict `labels` and the loss is computed per slice.
surrogate_type: A string that determines which loss to return, supports
'xent' for cross-entropy and 'hinge' for hinge loss.
positive_weights: A `Tensor` that holds positive weights and has the
following semantics according to its shape:
scalar - A global positive weight.
1D tensor - must be of size K, a weight for each 'attempt'
2D tensor - of size [num_labels, K'] where K' is either K or 1.
The `positive_weights` will be expanded to the left to match the
dimensions of logits and labels.
negative_weights: A `Tensor` that holds positive weight and has the
semantics identical to positive_weights.
name: A name for the operation (optional).
Returns:
The weigthed loss.
Raises:
ValueError: If value of `surrogate_type` is not supported.
"""
with tf.name_scope(
name, 'weighted_loss',
[logits, labels, surrogate_type, positive_weights,
negative_weights]) as name:
if surrogate_type == 'xent':
return weighted_sigmoid_cross_entropy_with_logits(
logits=logits,
labels=labels,
positive_weights=positive_weights,
negative_weights=negative_weights,
name=name)
elif surrogate_type == 'hinge':
return weighted_hinge_loss(
logits=logits,
labels=labels,
positive_weights=positive_weights,
negative_weights=negative_weights,
name=name)
raise ValueError('surrogate_type %s not supported.' % surrogate_type)
def expand_outer(tensor, rank):
"""Expands the given `Tensor` outwards to a target rank.
For example if rank = 3 and tensor.shape is [3, 4], this function will expand
to such that the resulting shape will be [1, 3, 4].
Args:
tensor: The tensor to expand.
rank: The target dimension.
Returns:
The expanded tensor.
Raises:
ValueError: If rank of `tensor` is unknown, or if `rank` is smaller than
the rank of `tensor`.
"""
if tensor.get_shape().ndims is None:
raise ValueError('tensor dimension must be known.')
if len(tensor.get_shape()) > rank:
raise ValueError(
'`rank` must be at least the current tensor dimension: (%s vs %s).' %
(rank, len(tensor.get_shape())))
while len(tensor.get_shape()) < rank:
tensor = tf.expand_dims(tensor, 0)
return tensor
def build_label_priors(labels,
weights=None,
positive_pseudocount=1.0,
negative_pseudocount=1.0,
variables_collections=None):
"""Creates an op to maintain and update label prior probabilities.
For each label, the label priors are estimated as
(P + sum_i w_i y_i) / (P + N + sum_i w_i),
where y_i is the ith label, w_i is the ith weight, P is a pseudo-count of
positive labels, and N is a pseudo-count of negative labels. The index i
ranges over all labels observed during all evaluations of the returned op.
Args:
labels: A `Tensor` with shape [batch_size, num_labels]. Entries should be
in [0, 1].
weights: Coefficients representing the weight of each label. Must be either
a Tensor of shape [batch_size, num_labels] or `None`, in which case each
weight is treated as 1.0.
positive_pseudocount: Number of positive labels used to initialize the label
priors.
negative_pseudocount: Number of negative labels used to initialize the label
priors.
variables_collections: Optional list of collections for created variables.
Returns:
label_priors: An op to update the weighted label_priors. Gives the
current value of the label priors when evaluated.
"""
dtype = labels.dtype.base_dtype
num_labels = get_num_labels(labels)
if weights is None:
weights = tf.ones_like(labels)
# We disable partitioning while constructing dual variables because they will
# be updated with assign, which is not available for partitioned variables.
partitioner = tf.get_variable_scope().partitioner
try:
tf.get_variable_scope().set_partitioner(None)
# Create variable and update op for weighted label counts.
weighted_label_counts = tf.contrib.framework.model_variable(
name='weighted_label_counts',
shape=[num_labels],
dtype=dtype,
initializer=tf.constant_initializer(
[positive_pseudocount] * num_labels, dtype=dtype),
collections=variables_collections,
trainable=False)
weighted_label_counts_update = weighted_label_counts.assign_add(
tf.reduce_sum(weights * labels, 0))
# Create variable and update op for the sum of the weights.
weight_sum = tf.contrib.framework.model_variable(
name='weight_sum',
shape=[num_labels],
dtype=dtype,
initializer=tf.constant_initializer(
[positive_pseudocount + negative_pseudocount] * num_labels,
dtype=dtype),
collections=variables_collections,
trainable=False)
weight_sum_update = weight_sum.assign_add(tf.reduce_sum(weights, 0))
finally:
tf.get_variable_scope().set_partitioner(partitioner)
label_priors = tf.div(
weighted_label_counts_update,
weight_sum_update)
return label_priors
def convert_and_cast(value, name, dtype):
"""Convert input to tensor and cast to dtype.
Args:
value: An object whose type has a registered Tensor conversion function,
e.g. python numerical type or numpy array.
name: Name to use for the new Tensor, if one is created.
dtype: Optional element type for the returned tensor.
Returns:
A tensor.
"""
return tf.cast(tf.convert_to_tensor(value, name=name), dtype=dtype)
def prepare_loss_args(labels, logits, positive_weights, negative_weights):
"""Prepare arguments for weighted loss functions.
If needed, will convert given arguments to appropriate type and shape.
Args:
labels: labels or labels of the loss function.
logits: Logits of the loss function.
positive_weights: Weight on the positive examples.
negative_weights: Weight on the negative examples.
Returns:
Converted labels, logits, positive_weights, negative_weights.
"""
logits = tf.convert_to_tensor(logits, name='logits')
labels = convert_and_cast(labels, 'labels', logits.dtype)
if len(labels.get_shape()) == 2 and len(logits.get_shape()) == 3:
labels = tf.expand_dims(labels, [2])
positive_weights = convert_and_cast(positive_weights, 'positive_weights',
logits.dtype)
positive_weights = expand_outer(positive_weights, logits.get_shape().ndims)
negative_weights = convert_and_cast(negative_weights, 'negative_weights',
logits.dtype)
negative_weights = expand_outer(negative_weights, logits.get_shape().ndims)
return labels, logits, positive_weights, negative_weights
def get_num_labels(labels_or_logits):
"""Returns the number of labels inferred from labels_or_logits."""
if labels_or_logits.get_shape().ndims <= 1:
return 1
return labels_or_logits.get_shape()[1].value
|