Spaces:
Running
Running
File size: 9,355 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Utility functions for KeypointNet.
These are helper / tensorflow related functions. The actual implementation and
algorithm is in main.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import os
import re
import tensorflow as tf
import tensorflow.contrib.slim as slim
import time
import traceback
class TrainingHook(tf.train.SessionRunHook):
"""A utility for displaying training information such as the loss, percent
completed, estimated finish date and time."""
def __init__(self, steps):
self.steps = steps
self.last_time = time.time()
self.last_est = self.last_time
self.eta_interval = int(math.ceil(0.1 * self.steps))
self.current_interval = 0
def before_run(self, run_context):
graph = tf.get_default_graph()
return tf.train.SessionRunArgs(
{"loss": graph.get_collection("total_loss")[0]})
def after_run(self, run_context, run_values):
step = run_context.session.run(tf.train.get_global_step())
now = time.time()
if self.current_interval < self.eta_interval:
self.duration = now - self.last_est
self.current_interval += 1
if step % self.eta_interval == 0:
self.duration = now - self.last_est
self.last_est = now
eta_time = float(self.steps - step) / self.current_interval * \
self.duration
m, s = divmod(eta_time, 60)
h, m = divmod(m, 60)
eta = "%d:%02d:%02d" % (h, m, s)
print("%.2f%% (%d/%d): %.3e t %.3f @ %s (%s)" % (
step * 100.0 / self.steps,
step,
self.steps,
run_values.results["loss"],
now - self.last_time,
time.strftime("%a %d %H:%M:%S", time.localtime(time.time() + eta_time)),
eta))
self.last_time = now
def standard_model_fn(
func, steps, run_config=None, sync_replicas=0, optimizer_fn=None):
"""Creates model_fn for tf.Estimator.
Args:
func: A model_fn with prototype model_fn(features, labels, mode, hparams).
steps: Training steps.
run_config: tf.estimatorRunConfig (usually passed in from TF_CONFIG).
sync_replicas: The number of replicas used to compute gradient for
synchronous training.
optimizer_fn: The type of the optimizer. Default to Adam.
Returns:
model_fn for tf.estimator.Estimator.
"""
def fn(features, labels, mode, params):
"""Returns model_fn for tf.estimator.Estimator."""
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
ret = func(features, labels, mode, params)
tf.add_to_collection("total_loss", ret["loss"])
train_op = None
training_hooks = []
if is_training:
training_hooks.append(TrainingHook(steps))
if optimizer_fn is None:
optimizer = tf.train.AdamOptimizer(params.learning_rate)
else:
optimizer = optimizer_fn
if run_config is not None and run_config.num_worker_replicas > 1:
sr = sync_replicas
if sr <= 0:
sr = run_config.num_worker_replicas
optimizer = tf.train.SyncReplicasOptimizer(
optimizer,
replicas_to_aggregate=sr,
total_num_replicas=run_config.num_worker_replicas)
training_hooks.append(
optimizer.make_session_run_hook(
run_config.is_chief, num_tokens=run_config.num_worker_replicas))
optimizer = tf.contrib.estimator.clip_gradients_by_norm(optimizer, 5)
train_op = slim.learning.create_train_op(ret["loss"], optimizer)
if "eval_metric_ops" not in ret:
ret["eval_metric_ops"] = {}
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=ret["predictions"],
loss=ret["loss"],
train_op=train_op,
eval_metric_ops=ret["eval_metric_ops"],
training_hooks=training_hooks)
return fn
def train_and_eval(
model_dir,
steps,
batch_size,
model_fn,
input_fn,
hparams,
keep_checkpoint_every_n_hours=0.5,
save_checkpoints_secs=180,
save_summary_steps=50,
eval_steps=20,
eval_start_delay_secs=10,
eval_throttle_secs=300,
sync_replicas=0):
"""Trains and evaluates our model. Supports local and distributed training.
Args:
model_dir: The output directory for trained parameters, checkpoints, etc.
steps: Training steps.
batch_size: Batch size.
model_fn: A func with prototype model_fn(features, labels, mode, hparams).
input_fn: A input function for the tf.estimator.Estimator.
hparams: tf.HParams containing a set of hyperparameters.
keep_checkpoint_every_n_hours: Number of hours between each checkpoint
to be saved.
save_checkpoints_secs: Save checkpoints every this many seconds.
save_summary_steps: Save summaries every this many steps.
eval_steps: Number of steps to evaluate model.
eval_start_delay_secs: Start evaluating after waiting for this many seconds.
eval_throttle_secs: Do not re-evaluate unless the last evaluation was
started at least this many seconds ago
sync_replicas: Number of synchronous replicas for distributed training.
Returns:
None
"""
run_config = tf.estimator.RunConfig(
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
save_checkpoints_secs=save_checkpoints_secs,
save_summary_steps=save_summary_steps)
estimator = tf.estimator.Estimator(
model_dir=model_dir,
model_fn=standard_model_fn(
model_fn,
steps,
run_config,
sync_replicas=sync_replicas),
params=hparams, config=run_config)
train_spec = tf.estimator.TrainSpec(
input_fn=input_fn(split="train", batch_size=batch_size),
max_steps=steps)
eval_spec = tf.estimator.EvalSpec(
input_fn=input_fn(split="validation", batch_size=batch_size),
steps=eval_steps,
start_delay_secs=eval_start_delay_secs,
throttle_secs=eval_throttle_secs)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
def draw_circle(rgb, u, v, col, r):
"""Draws a simple anti-aliasing circle in-place.
Args:
rgb: Input image to be modified.
u: Horizontal coordinate.
v: Vertical coordinate.
col: Color.
r: Radius.
"""
ir = int(math.ceil(r))
for i in range(-ir-1, ir+2):
for j in range(-ir-1, ir+2):
nu = int(round(u + i))
nv = int(round(v + j))
if nu < 0 or nu >= rgb.shape[1] or nv < 0 or nv >= rgb.shape[0]:
continue
du = abs(nu - u)
dv = abs(nv - v)
# need sqrt to keep scale
t = math.sqrt(du * du + dv * dv) - math.sqrt(r * r)
if t < 0:
rgb[nv, nu, :] = col
else:
t = 1 - t
if t > 0:
# t = t ** 0.3
rgb[nv, nu, :] = col * t + rgb[nv, nu, :] * (1-t)
def draw_ndc_points(rgb, xy, cols):
"""Draws keypoints onto an input image.
Args:
rgb: Input image to be modified.
xy: [n x 2] matrix of 2D locations.
cols: A list of colors for the keypoints.
"""
vh, vw = rgb.shape[0], rgb.shape[1]
for j in range(len(cols)):
x, y = xy[j, :2]
x = (min(max(x, -1), 1) * vw / 2 + vw / 2) - 0.5
y = vh - 0.5 - (min(max(y, -1), 1) * vh / 2 + vh / 2)
x = int(round(x))
y = int(round(y))
if x < 0 or y < 0 or x >= vw or y >= vh:
continue
rad = 1.5
rad *= rgb.shape[0] / 128.0
draw_circle(rgb, x, y, np.array([0.0, 0.0, 0.0, 1.0]), rad * 1.5)
draw_circle(rgb, x, y, cols[j], rad)
def colored_hook(home_dir):
"""Colorizes python's error message.
Args:
home_dir: directory where code resides (to highlight your own files).
Returns:
The traceback hook.
"""
def hook(type_, value, tb):
def colorize(text, color, own=0):
"""Returns colorized text."""
endcolor = "\x1b[0m"
codes = {
"green": "\x1b[0;32m",
"green_own": "\x1b[1;32;40m",
"red": "\x1b[0;31m",
"red_own": "\x1b[1;31m",
"yellow": "\x1b[0;33m",
"yellow_own": "\x1b[1;33m",
"black": "\x1b[0;90m",
"black_own": "\x1b[1;90m",
"cyan": "\033[1;36m",
}
return codes[color + ("_own" if own else "")] + text + endcolor
for filename, line_num, func, text in traceback.extract_tb(tb):
basename = os.path.basename(filename)
own = (home_dir in filename) or ("/" not in filename)
print(colorize("\"" + basename + '"', "green", own) + " in " + func)
print("%s: %s" % (
colorize("%5d" % line_num, "red", own),
colorize(text, "yellow", own)))
print(" %s" % colorize(filename, "black", own))
print(colorize("%s: %s" % (type_.__name__, value), "cyan"))
return hook
|