File size: 35,494 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Collection of trainable optimizers for meta-optimization."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import numpy as np
import tensorflow as tf

from tensorflow.python.ops import state_ops
from learned_optimizer.optimizer import rnn_cells
from learned_optimizer.optimizer import trainable_optimizer as opt
from learned_optimizer.optimizer import utils

# Default was 0.1
tf.app.flags.DEFINE_float("biasgrucell_scale", 0.5,
                          """The scale for the internal BiasGRUCell vars.""")
# Default was 0
tf.app.flags.DEFINE_float("biasgrucell_gate_bias_init", 2.2,
                          """The bias for the internal BiasGRUCell reset and
                             update gate variables.""")
# Default was 1e-3
tf.app.flags.DEFINE_float("hrnn_rnn_readout_scale", 0.5,
                          """The initialization scale for the RNN readouts.""")
tf.app.flags.DEFINE_float("hrnn_default_decay_var_init", 2.2,
                          """The default initializer value for any decay/
                             momentum style variables and constants.
                             sigmoid(2.2) ~ 0.9, sigmoid(-2.2) ~ 0.01.""")
# Default was 2.2
tf.app.flags.DEFINE_float("scale_decay_bias_init", 3.2,
                          """The initialization for the scale decay bias. This
                             is the initial bias for the timescale for the
                             exponential avg of the mean square gradients.""")
tf.app.flags.DEFINE_float("learning_rate_momentum_logit_init", 3.2,
                          """Initialization for the learning rate momentum.""")
# Default was 0.1
tf.app.flags.DEFINE_float("hrnn_affine_scale", 0.5,
                          """The initialization scale for the weight matrix of
                             the bias variables in layer0 and 1 of the hrnn.""")

FLAGS = tf.flags.FLAGS


class HierarchicalRNN(opt.TrainableOptimizer):
  """3 level hierarchical RNN.

  Optionally uses second order gradient information and has decoupled evaluation
  and update locations.
  """

  def __init__(self, level_sizes, init_lr_range=(1e-6, 1e-2),
               learnable_decay=True, dynamic_output_scale=True,
               use_attention=False, use_log_objective=True,
               num_gradient_scales=4, zero_init_lr_weights=True,
               use_log_means_squared=True, use_relative_lr=True,
               use_extreme_indicator=False, max_log_lr=33,
               obj_train_max_multiplier=-1, use_problem_lr_mean=False,
               use_gradient_shortcut=False, use_lr_shortcut=False,
               use_grad_products=False, use_multiple_scale_decays=False,
               learnable_inp_decay=True, learnable_rnn_init=True,
               random_seed=None, **kwargs):
    """Initializes the RNN per-parameter optimizer.

    The hierarchy consists of up to three levels:
    Level 0: per parameter RNN
    Level 1: per tensor RNN
    Level 2: global RNN

    Args:
      level_sizes: list or tuple with 1, 2, or 3 integers, the number of units
          in each RNN in the hierarchy (level0, level1, level2).
          length 1: only coordinatewise rnn's will be used
          length 2: coordinatewise and tensor-level rnn's will be used
          length 3: a single global-level rnn will be used in addition to
             coordinatewise and tensor-level
      init_lr_range: the range in which to initialize the learning rates
      learnable_decay: whether to learn weights that dynamically modulate the
          input scale via RMS style decay
      dynamic_output_scale: whether to learn weights that dynamically modulate
          the output scale
      use_attention: whether to use attention to train the optimizer
      use_log_objective: whether to train on the log of the objective
      num_gradient_scales: the number of scales to use for gradient history
      zero_init_lr_weights: whether to initialize the lr weights to zero
      use_log_means_squared: whether to track the log of the means_squared,
          used as a measure of signal vs. noise in gradient.
      use_relative_lr: whether to use the relative learning rate as an
          input during training (requires learnable_decay=True)
      use_extreme_indicator: whether to use the extreme indicator for learning
          rates as an input during training (requires learnable_decay=True)
      max_log_lr: the maximum log learning rate allowed during train or test
      obj_train_max_multiplier: max objective increase during a training run
      use_problem_lr_mean: whether to use the mean over all learning rates in
          the problem when calculating the relative learning rate as opposed to
          the per-tensor mean
      use_gradient_shortcut: Whether to add a learned affine projection of the
          gradient to the update delta in addition to the gradient function
          computed by the RNN
      use_lr_shortcut: Whether to add as input the difference between the log lr
          and the desired log lr (1e-3)
      use_grad_products: Whether to use gradient products in the rnn input.
          Only applicable if num_gradient_scales > 1
      use_multiple_scale_decays: Whether to use multiple scales for the scale
          decay, as with input decay
      learnable_inp_decay: Whether to learn the input decay weights and bias.
      learnable_rnn_init: Whether to learn the RNN state initialization.
      random_seed: Random seed for random variable initializers. (Default: None)
      **kwargs: args passed to TrainableOptimizer's constructor

    Raises:
      ValueError: If level_sizes is not a length 1, 2, or 3 list.
      ValueError: If there are any non-integer sizes in level_sizes.
      ValueError: If the init lr range is not of length 2.
      ValueError: If the init lr range is not a valid range (min > max).
    """
    if len(level_sizes) not in [1, 2, 3]:
      raise ValueError("HierarchicalRNN only supports 1, 2, or 3 levels in the "
                       "hierarchy, but {} were requested.".format(
                           len(level_sizes)))
    if any(not isinstance(level, int) for level in level_sizes):
      raise ValueError("Level sizes must be integer values, were {}".format(
          level_sizes))
    if len(init_lr_range) != 2:
      raise ValueError(
          "Initial LR range must be len 2, was {}".format(len(init_lr_range)))
    if init_lr_range[0] > init_lr_range[1]:
      raise ValueError("Initial LR range min is greater than max.")

    self.learnable_decay = learnable_decay
    self.dynamic_output_scale = dynamic_output_scale
    self.use_attention = use_attention
    self.use_log_objective = use_log_objective
    self.num_gradient_scales = num_gradient_scales
    self.zero_init_lr_weights = zero_init_lr_weights
    self.use_log_means_squared = use_log_means_squared
    self.use_relative_lr = use_relative_lr
    self.use_extreme_indicator = use_extreme_indicator
    self.max_log_lr = max_log_lr
    self.use_problem_lr_mean = use_problem_lr_mean
    self.use_gradient_shortcut = use_gradient_shortcut
    self.use_lr_shortcut = use_lr_shortcut
    self.use_grad_products = use_grad_products
    self.use_multiple_scale_decays = use_multiple_scale_decays
    self.learnable_inp_decay = learnable_inp_decay
    self.learnable_rnn_init = learnable_rnn_init

    self.random_seed = random_seed

    self.num_layers = len(level_sizes)
    self.init_lr_range = init_lr_range

    self.reuse_vars = None
    self.reuse_global_state = None
    self.cells = []
    self.init_vectors = []

    with tf.variable_scope(opt.OPTIMIZER_SCOPE):

      self._initialize_rnn_cells(level_sizes)

      # get the cell size for the per-parameter RNN (Level 0)
      cell_size = level_sizes[0]

      # Random normal initialization scaled by the output size. This is the
      # scale for the RNN *readouts*. RNN internal weight scale is set in the
      # BiasGRUCell call.
      scale_factor = FLAGS.hrnn_rnn_readout_scale / math.sqrt(cell_size)
      scaled_init = tf.random_normal_initializer(0., scale_factor,
                                                 seed=self.random_seed)

      # weights for projecting the hidden state to a parameter update
      self.update_weights = tf.get_variable("update_weights",
                                            shape=(cell_size, 1),
                                            initializer=scaled_init)

      if self.use_attention:
        # weights for projecting the hidden state to the location at which the
        # gradient is attended
        self.attention_weights = tf.get_variable(
            "attention_weights",
            initializer=self.update_weights.initialized_value())

      # weights for projecting the hidden state to the RMS decay term
      self._initialize_scale_decay((cell_size, 1), scaled_init)
      self._initialize_input_decay((cell_size, 1), scaled_init)

      self._initialize_lr((cell_size, 1), scaled_init)

    state_keys = ["parameter", "layer", "scl_decay", "inp_decay", "true_param"]

    if self.dynamic_output_scale:
      state_keys.append("log_learning_rate")

    for i in range(self.num_gradient_scales):
      state_keys.append("grad_accum{}".format(i + 1))
      state_keys.append("ms{}".format(i + 1))

    super(HierarchicalRNN, self).__init__(
        "hRNN", state_keys, use_attention=use_attention,
        use_log_objective=use_log_objective,
        obj_train_max_multiplier=obj_train_max_multiplier, **kwargs)

  def _initialize_rnn_cells(self, level_sizes):
    """Initializes the RNN cells to use in the hierarchical RNN."""

    # RNN Cell layers (0 -> lowest, 1 -> middle, 2 -> global)
    for level in range(self.num_layers):
      scope = "Level{}_RNN".format(level)
      with tf.variable_scope(scope):
        hcell = rnn_cells.BiasGRUCell(
            level_sizes[level],
            scale=FLAGS.biasgrucell_scale,
            gate_bias_init=FLAGS.biasgrucell_gate_bias_init,
            random_seed=self.random_seed)
        self.cells.append(hcell)
        if self.learnable_rnn_init:
          self.init_vectors.append(tf.Variable(
              tf.random_uniform([1, hcell.state_size], -1., 1.,
                                seed=self.random_seed),
              name="init_vector"))
        else:
          self.init_vectors.append(
              tf.random_uniform([1, hcell.state_size], -1., 1.,
                                seed=self.random_seed))

  def _initialize_scale_decay(self, weights_tensor_shape, scaled_init):
    """Initializes the scale decay weights and bias variables or tensors.

    Args:
      weights_tensor_shape: The shape the weight tensor should take.
      scaled_init: The scaled initialization for the weights tensor.
    """
    if self.learnable_decay:
      self.scl_decay_weights = tf.get_variable("scl_decay_weights",
                                               shape=weights_tensor_shape,
                                               initializer=scaled_init)
      scl_decay_bias_init = tf.constant_initializer(
          FLAGS.scale_decay_bias_init)
      self.scl_decay_bias = tf.get_variable("scl_decay_bias",
                                            shape=(1,),
                                            initializer=scl_decay_bias_init)
    else:
      self.scl_decay_weights = tf.zeros_like(self.update_weights)
      self.scl_decay_bias = tf.log(0.93 / (1. - 0.93))

  def _initialize_input_decay(self, weights_tensor_shape, scaled_init):
    """Initializes the input scale decay weights and bias variables or tensors.

    Args:
      weights_tensor_shape: The shape the weight tensor should take.
      scaled_init: The scaled initialization for the weights tensor.
    """
    if (self.learnable_decay and self.num_gradient_scales > 1 and
        self.learnable_inp_decay):
      self.inp_decay_weights = tf.get_variable("inp_decay_weights",
                                               shape=weights_tensor_shape,
                                               initializer=scaled_init)
      inp_decay_bias_init = tf.constant_initializer(
          FLAGS.hrnn_default_decay_var_init)
      self.inp_decay_bias = tf.get_variable("inp_decay_bias",
                                            shape=(1,),
                                            initializer=inp_decay_bias_init)
    else:
      self.inp_decay_weights = tf.zeros_like(self.update_weights)
      self.inp_decay_bias = tf.log(0.89 / (1. - 0.89))

  def _initialize_lr(self, weights_tensor_shape, scaled_init):
    """Initializes the learning rate weights and bias variables or tensors.

    Args:
      weights_tensor_shape: The shape the weight tensor should take.
      scaled_init: The scaled initialization for the weights tensor.
    """
    if self.dynamic_output_scale:
      zero_init = tf.constant_initializer(0.)
      wt_init = zero_init if self.zero_init_lr_weights else scaled_init
      self.lr_weights = tf.get_variable("learning_rate_weights",
                                        shape=weights_tensor_shape,
                                        initializer=wt_init)
      self.lr_bias = tf.get_variable("learning_rate_bias", shape=(1,),
                                     initializer=zero_init)
    else:
      self.lr_weights = tf.zeros_like(self.update_weights)
      self.lr_bias = tf.zeros([1, 1])

  def _initialize_state(self, var):
    """Return a dictionary mapping names of state variables to their values."""
    var_vectorized = tf.reshape(var, [-1, 1])
    ndim = var_vectorized.get_shape().as_list()[0]

    state = {
        # parameter init tensor is [var_ndim x layer0_cell_size]
        "parameter": tf.ones([ndim, 1]) * self.init_vectors[0],
        "scl_decay": tf.zeros_like(var_vectorized),
        "inp_decay": tf.zeros_like(var_vectorized),
        "true_param": var,
    }

    if self.num_layers > 1:
      # layer init tensor is [1 x layer1_cell_size]
      state["layer"] = tf.ones([1, 1]) * self.init_vectors[1]

    if self.dynamic_output_scale:
      min_lr = self.init_lr_range[0]
      max_lr = self.init_lr_range[1]
      if min_lr == max_lr:
        log_init_lr = tf.log(min_lr * tf.ones_like(var_vectorized))
      else:
        # Use a random offset to increase the likelihood that the average of the
        # LRs for this variable is different from the LRs for other variables.
        actual_vals = tf.random_uniform(var_vectorized.get_shape().as_list(),
                                        np.log(min_lr) / 2.,
                                        np.log(max_lr) / 2.,
                                        seed=self.random_seed)
        offset = tf.random_uniform((), np.log(min_lr) / 2., np.log(max_lr) / 2.,
                                   seed=self.random_seed)
        log_init_lr = actual_vals + offset
      # Clip the log learning rate to the flag at the top end, and to
      # (log(min int32) - 1) at the bottom
      clipped = tf.clip_by_value(log_init_lr, -33, self.max_log_lr)
      state["log_learning_rate"] = clipped

    for i in range(self.num_gradient_scales):
      state["grad_accum{}".format(i + 1)] = tf.zeros_like(var_vectorized)
      state["ms{}".format(i + 1)] = tf.zeros_like(var_vectorized)

    return state

  def _initialize_global_state(self):
    if self.num_layers < 3:
      return []
    rnn_global_init = tf.ones([1, 1]) * self.init_vectors[2]
    return [rnn_global_init]

  def _compute_updates(self, params, grads, states, global_state):
    # Store the updated parameters and states.
    updated_params = []
    updated_attention = []
    updated_states = []

    with tf.variable_scope(opt.OPTIMIZER_SCOPE):

      mean_log_lr = self._compute_mean_log_lr(states)

      # Iterate over the layers.
      for param, grad_unflat, state in zip(params, grads, states):

        with tf.variable_scope("PerTensor", reuse=self.reuse_vars):
          self.reuse_vars = True
          grad = tf.reshape(grad_unflat, [-1, 1])

          # Create the RNN input. We will optionally extend it with additional
          # features such as curvature and gradient signal vs. noise.
          (grads_scaled, mean_squared_gradients,
           grads_accum) = self._compute_scaled_and_ms_grads(grad, state)
          rnn_input = [g for g in grads_scaled]

          self._extend_rnn_input(rnn_input, state, grads_scaled,
                                 mean_squared_gradients, mean_log_lr)

          # Concatenate any features we've collected.
          rnn_input_tensor = tf.concat(rnn_input, 1)

          layer_state, new_param_state = self._update_rnn_cells(
              state, global_state, rnn_input_tensor,
              len(rnn_input) != len(grads_scaled))

          (scl_decay, inp_decay, new_log_lr, update_step, lr_attend,
           attention_delta) = self._compute_rnn_state_projections(
               state, new_param_state, grads_scaled)

          # Apply updates and store state variables.
          if self.use_attention:
            truth = state["true_param"]
            updated_param = truth - update_step
            attention_step = tf.reshape(lr_attend * attention_delta,
                                        truth.get_shape())
            updated_attention.append(truth - attention_step)
          else:
            updated_param = param - update_step
            updated_attention.append(updated_param)
          updated_params.append(updated_param)

          # Collect the new state.
          new_state = {
              "parameter": new_param_state,
              "scl_decay": scl_decay,
              "inp_decay": inp_decay,
              "true_param": updated_param,
          }
          if layer_state is not None:
            new_state["layer"] = layer_state

          if self.dynamic_output_scale:
            new_state["log_learning_rate"] = new_log_lr

          for i in range(self.num_gradient_scales):
            new_state["grad_accum{}".format(i + 1)] = grads_accum[i]
            new_state["ms{}".format(i + 1)] = mean_squared_gradients[i]
          updated_states.append(new_state)

      updated_global_state = self._compute_updated_global_state([layer_state],
                                                                global_state)

    return (updated_params, updated_states, [updated_global_state],
            updated_attention)

  def _compute_mean_log_lr(self, states):
    """Computes the mean log learning rate across all variables."""
    if self.use_problem_lr_mean and self.use_relative_lr:

      sum_log_lr = 0.
      count_log_lr = 0.
      for state in states:
        sum_log_lr += tf.reduce_sum(state["log_learning_rate"])
        # Note: get_shape().num_elements()=num elements in the original tensor.
        count_log_lr += state["log_learning_rate"].get_shape().num_elements()
      return sum_log_lr / count_log_lr

  def _compute_scaled_and_ms_grads(self, grad, state):
    """Computes the scaled gradient and the mean squared gradients.

    Gradients are also accumulated across different timescales if appropriate.

    Args:
      grad: The gradient tensor for this layer.
      state: The optimizer state for this layer.

    Returns:
      The scaled gradients, mean squared gradients, and accumulated gradients.
    """
    input_decays = [state["inp_decay"]]
    scale_decays = [state["scl_decay"]]
    if self.use_multiple_scale_decays and self.num_gradient_scales > 1:
      for i in range(self.num_gradient_scales - 1):
        scale_decays.append(tf.sqrt(scale_decays[i]))

    for i in range(self.num_gradient_scales - 1):
      # Each accumulator on twice the timescale of the one before.
      input_decays.append(tf.sqrt(input_decays[i]))
    grads_accum = []
    grads_scaled = []
    mean_squared_gradients = []

    # populate the scaled gradients and associated mean_squared values
    if self.num_gradient_scales > 0:
      for i, decay in enumerate(input_decays):
        if self.num_gradient_scales == 1:
          # We don't accumulate if no scales, just take the current gradient.
          grad_accum = grad
        else:
          # The state vars are 1-indexed.
          old_accum = state["grad_accum{}".format(i + 1)]
          grad_accum = grad * (1. - decay) + old_accum * decay

        grads_accum.append(grad_accum)

        sd = scale_decays[i if self.use_multiple_scale_decays else 0]
        grad_scaled, ms = utils.rms_scaling(grad_accum, sd,
                                            state["ms{}".format(i + 1)],
                                            update_ms=True)
        grads_scaled.append(grad_scaled)
        mean_squared_gradients.append(ms)

    return grads_scaled, mean_squared_gradients, grads_accum

  def _extend_rnn_input(self, rnn_input, state, grads_scaled,
                        mean_squared_gradients, mean_log_lr):
    """Computes additional rnn inputs and adds them to the rnn_input list."""
    if self.num_gradient_scales > 1 and self.use_grad_products:
      # This gives a measure of curvature relative to input averaging
      # lengthscale and to the learning rate
      grad_products = [a * b for a, b in
                       zip(grads_scaled[:-1], grads_scaled[1:])]
      rnn_input.extend([g for g in grad_products])

    if self.use_log_means_squared:
      log_means_squared = [tf.log(ms + 1e-16)
                           for ms in mean_squared_gradients]

      avg = tf.reduce_mean(log_means_squared, axis=0)
      # This gives a measure of the signal vs. noise contribution to the
      # gradient, at the current averaging lengthscale. If all the noise
      # is averaged out, and if updates are small, these will be 0.
      mean_log_means_squared = [m - avg for m in log_means_squared]

      rnn_input.extend([m for m in mean_log_means_squared])

    if self.use_relative_lr or self.use_extreme_indicator:
      if not self.dynamic_output_scale:
        raise Exception("Relative LR and Extreme Indicator features "
                        "require dynamic_output_scale to be set to True.")
      log_lr_vec = tf.reshape(state["log_learning_rate"], [-1, 1])
      if self.use_relative_lr:
        if self.use_problem_lr_mean:
          # Learning rate of this dimension vs. rest of target problem.
          relative_lr = log_lr_vec - mean_log_lr
        else:
          # Learning rate of this dimension vs. rest of tensor.
          relative_lr = log_lr_vec - tf.reduce_mean(log_lr_vec)
        rnn_input.append(relative_lr)
      if self.use_extreme_indicator:
        # Indicator of extremely large or extremely small learning rate.
        extreme_indicator = (tf.nn.relu(log_lr_vec - tf.log(1.)) -
                             tf.nn.relu(tf.log(1e-6) - log_lr_vec))
        rnn_input.append(extreme_indicator)

    if self.use_lr_shortcut:
      log_lr_vec = tf.reshape(state["log_learning_rate"], [-1, 1])
      rnn_input.append(log_lr_vec - tf.log(1e-3))

  def _update_rnn_cells(self, state, global_state, rnn_input_tensor,
                        use_additional_features):
    """Updates the component RNN cells with the given state and tensor.

    Args:
      state: The current state of the optimizer.
      global_state: The current global RNN state.
      rnn_input_tensor: The input tensor to the RNN.
      use_additional_features: Whether the rnn input tensor contains additional
          features beyond the scaled gradients (affects whether the rnn input
          tensor is used as input to the RNN.)

    Returns:
      layer_state: The new state of the per-tensor RNN.
      new_param_state: The new state of the per-parameter RNN.
    """
    # lowest level (per parameter)
    #   input -> gradient for this parameter
    #   bias -> output from the layer RNN
    with tf.variable_scope("Layer0_RNN"):
      total_bias = None
      if self.num_layers > 1:
        sz = 3 * self.cells[0].state_size    # size of the concatenated bias
        param_bias = utils.affine([state["layer"]], sz,
                                  scope="Param/Affine",
                                  scale=FLAGS.hrnn_affine_scale,
                                  random_seed=self.random_seed)
        total_bias = param_bias
        if self.num_layers == 3:
          global_bias = utils.affine(global_state, sz,
                                     scope="Global/Affine",
                                     scale=FLAGS.hrnn_affine_scale,
                                     random_seed=self.random_seed)
          total_bias += global_bias

      new_param_state, _ = self.cells[0](
          rnn_input_tensor, state["parameter"], bias=total_bias)

    if self.num_layers > 1:
      # middle level (per layer)
      #   input -> average hidden state from each parameter in this layer
      #   bias -> output from the RNN at the global level
      with tf.variable_scope("Layer1_RNN"):
        if not use_additional_features:
          # Restore old behavior and only add the mean of the new params.
          layer_input = tf.reduce_mean(new_param_state, 0, keep_dims=True)
        else:
          layer_input = tf.reduce_mean(
              tf.concat((new_param_state, rnn_input_tensor), 1), 0,
              keep_dims=True)
        if self.num_layers == 3:
          sz = 3 * self.cells[1].state_size
          layer_bias = utils.affine(global_state, sz,
                                    scale=FLAGS.hrnn_affine_scale,
                                    random_seed=self.random_seed)
          layer_state, _ = self.cells[1](
              layer_input, state["layer"], bias=layer_bias)
        else:
          layer_state, _ = self.cells[1](layer_input, state["layer"])
    else:
      layer_state = None

    return layer_state, new_param_state

  def _compute_rnn_state_projections(self, state, new_param_state,
                                     grads_scaled):
    """Computes the RNN state-based updates to parameters and update steps."""
    # Compute the update direction (a linear projection of the RNN output).
    update_weights = self.update_weights

    update_delta = utils.project(new_param_state, update_weights)
    if self.use_gradient_shortcut:
      # Include an affine projection of just the direction of the gradient
      # so that RNN hidden states are freed up to store more complex
      # functions of the gradient and other parameters.
      grads_scaled_tensor = tf.concat([g for g in grads_scaled], 1)
      update_delta += utils.affine(grads_scaled_tensor, 1,
                                   scope="GradsToDelta",
                                   include_bias=False,
                                   vec_mean=1. / len(grads_scaled),
                                   random_seed=self.random_seed)
    if self.dynamic_output_scale:
      denom = tf.sqrt(tf.reduce_mean(update_delta ** 2) + 1e-16)

      update_delta /= denom

    if self.use_attention:
      attention_weights = self.attention_weights
      attention_delta = utils.project(new_param_state,
                                      attention_weights)
      if self.use_gradient_shortcut:
        attention_delta += utils.affine(grads_scaled_tensor, 1,
                                        scope="GradsToAttnDelta",
                                        include_bias=False,
                                        vec_mean=1. / len(grads_scaled),
                                        random_seed=self.random_seed)
      if self.dynamic_output_scale:
        attention_delta /= tf.sqrt(
            tf.reduce_mean(attention_delta ** 2) + 1e-16)
    else:
      attention_delta = None

    # The updated decay is an affine projection of the hidden state.
    scl_decay = utils.project(new_param_state, self.scl_decay_weights,
                              bias=self.scl_decay_bias,
                              activation=tf.nn.sigmoid)
    # This is only used if learnable_decay and num_gradient_scales > 1
    inp_decay = utils.project(new_param_state, self.inp_decay_weights,
                              bias=self.inp_decay_bias,
                              activation=tf.nn.sigmoid)

    # Also update the learning rate.
    lr_param, lr_attend, new_log_lr = self._compute_new_learning_rate(
        state, new_param_state)

    update_step = tf.reshape(lr_param * update_delta,
                             state["true_param"].get_shape())

    return (scl_decay, inp_decay, new_log_lr, update_step, lr_attend,
            attention_delta)

  def _compute_new_learning_rate(self, state, new_param_state):
    if self.dynamic_output_scale:
      # Compute the change in learning rate (an affine projection of the
      # RNN state, passed through a sigmoid or log depending on flags).
      # Update the learning rate, w/ momentum.
      lr_change = utils.project(new_param_state, self.lr_weights,
                                bias=self.lr_bias)
      step_log_lr = state["log_learning_rate"] + lr_change

      # Clip the log learning rate to the flag at the top end, and to
      # (log(min int32) - 1) at the bottom

      # Check out this hack: we want to be able to compute the gradient
      # of the downstream result w.r.t lr weights and bias, even if the
      # value of step_log_lr is outside the clip range. So we clip,
      # subtract off step_log_lr, and wrap all that in a stop_gradient so
      # TF never tries to take the gradient of the clip... or the
      # subtraction. Then we add BACK step_log_lr so that downstream still
      # receives the clipped value. But the GRADIENT of step_log_lr will
      # be the gradient of the unclipped value, which we added back in
      # after stop_gradients.
      step_log_lr += tf.stop_gradient(
          tf.clip_by_value(step_log_lr, -33, self.max_log_lr)
          - step_log_lr)

      lr_momentum_logit = tf.get_variable(
          "learning_rate_momentum_logit",
          initializer=FLAGS.learning_rate_momentum_logit_init)
      lrm = tf.nn.sigmoid(lr_momentum_logit)
      new_log_lr = (lrm * state["log_learning_rate"] +
                    (1. - lrm) * step_log_lr)
      param_stepsize_offset = tf.get_variable("param_stepsize_offset",
                                              initializer=-1.)
      lr_param = tf.exp(step_log_lr + param_stepsize_offset)
      lr_attend = tf.exp(step_log_lr) if self.use_attention else lr_param
    else:
      # Dynamic output scale is off, LR param is always 1.
      lr_param = 2. * utils.project(new_param_state, self.lr_weights,
                                    bias=self.lr_bias,
                                    activation=tf.nn.sigmoid)
      new_log_lr = None
      lr_attend = lr_param

    return lr_param, lr_attend, new_log_lr

  def _compute_updated_global_state(self, layer_states, global_state):
    """Computes the new global state gives the layers states and old state.

    Args:
      layer_states: The current layer states.
      global_state: The old global state.

    Returns:
      The updated global state.
    """
    updated_global_state = []
    if self.num_layers == 3:
      # highest (global) layer
      #   input -> average hidden state from each layer-specific RNN
      #   bias -> None
      with tf.variable_scope("Layer2_RNN", reuse=self.reuse_global_state):
        self.reuse_global_state = True
        global_input = tf.reduce_mean(tf.concat(layer_states, 0), 0,
                                      keep_dims=True)
        updated_global_state, _ = self.cells[2](global_input, global_state[0])
    return updated_global_state

  def apply_gradients(self, grads_and_vars, global_step=None, name=None):
    """Overwrites the tf.train.Optimizer interface for applying gradients."""

    # Pull out the variables.
    grads_and_vars = tuple(grads_and_vars)  # Make sure repeat iteration works.
    for g, v in grads_and_vars:
      if not isinstance(g, (tf.Tensor, tf.IndexedSlices, type(None))):
        raise TypeError(
            "Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
      if not isinstance(v, tf.Variable):
        raise TypeError(
            "Variable must be a tf.Variable: %s" % v)
      if g is not None:
        self._assert_valid_dtypes([g, v])
    var_list = [v for g, v in grads_and_vars if g is not None]
    if not var_list:
      raise ValueError("No gradients provided for any variable: %s" %
                       (grads_and_vars,))

    # Create slots for the variables.
    with tf.control_dependencies(None):
      self._create_slots(var_list)

    # Store update ops in this list.
    with tf.op_scope([], name, self._name) as name:

      # Prepare the global state.
      with tf.variable_scope(self._name, reuse=self.reuse_global_state):
        gs = self._initialize_global_state()
        if gs:
          global_state = [tf.get_variable("global_state", initializer=gs[0])]
        else:
          global_state = []

      # Get the states for each variable in the list.
      states = [{key: self.get_slot(var, key) for key in self.get_slot_names()}
                for var in var_list]

      # Compute updated values.
      grads, params = zip(*grads_and_vars)
      args = (params, grads, states, global_state)
      updates = self._compute_updates(*args)
      new_params, new_states, new_global_state, new_attention = updates
      # Assign op for new global state.
      update_ops = [tf.assign(gs, ngs)
                    for gs, ngs in zip(global_state, new_global_state)]

      # Create the assign ops for the params and state variables.
      args = (params, states, new_params, new_attention, new_states)
      for var, state, new_var, new_var_attend, new_state in zip(*args):
        # Assign updates to the state variables.
        state_assign_ops = [tf.assign(state_var, new_state[key])
                            for key, state_var in state.items()]

        # Update the parameter.
        with tf.control_dependencies(state_assign_ops):
          if self.use_attention:
            # Assign to the attended location, rather than the actual location
            # so that the gradients are computed where attention is.
            param_update_op = var.assign(new_var_attend)
          else:
            param_update_op = var.assign(new_var)

        with tf.name_scope("update_" + var.op.name):   #, tf.colocate_with(var):
          update_ops.append(param_update_op)

      real_params = [self.get_slot(var, "true_param") for var in var_list]

      if global_step is None:
        # NOTE: if using the optimizer in a non-test-optimizer setting (e.g.
        # on Inception), remove the real_params return value. Otherwise
        # the code will throw an error.
        return self._finish(update_ops, name), real_params
      else:
        with tf.control_dependencies([self._finish(update_ops, "update")]):
          return state_ops.assign_add(global_step, 1, name=name).op, real_params