Spaces:
Running
Running
File size: 35,494 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Collection of trainable optimizers for meta-optimization."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import state_ops
from learned_optimizer.optimizer import rnn_cells
from learned_optimizer.optimizer import trainable_optimizer as opt
from learned_optimizer.optimizer import utils
# Default was 0.1
tf.app.flags.DEFINE_float("biasgrucell_scale", 0.5,
"""The scale for the internal BiasGRUCell vars.""")
# Default was 0
tf.app.flags.DEFINE_float("biasgrucell_gate_bias_init", 2.2,
"""The bias for the internal BiasGRUCell reset and
update gate variables.""")
# Default was 1e-3
tf.app.flags.DEFINE_float("hrnn_rnn_readout_scale", 0.5,
"""The initialization scale for the RNN readouts.""")
tf.app.flags.DEFINE_float("hrnn_default_decay_var_init", 2.2,
"""The default initializer value for any decay/
momentum style variables and constants.
sigmoid(2.2) ~ 0.9, sigmoid(-2.2) ~ 0.01.""")
# Default was 2.2
tf.app.flags.DEFINE_float("scale_decay_bias_init", 3.2,
"""The initialization for the scale decay bias. This
is the initial bias for the timescale for the
exponential avg of the mean square gradients.""")
tf.app.flags.DEFINE_float("learning_rate_momentum_logit_init", 3.2,
"""Initialization for the learning rate momentum.""")
# Default was 0.1
tf.app.flags.DEFINE_float("hrnn_affine_scale", 0.5,
"""The initialization scale for the weight matrix of
the bias variables in layer0 and 1 of the hrnn.""")
FLAGS = tf.flags.FLAGS
class HierarchicalRNN(opt.TrainableOptimizer):
"""3 level hierarchical RNN.
Optionally uses second order gradient information and has decoupled evaluation
and update locations.
"""
def __init__(self, level_sizes, init_lr_range=(1e-6, 1e-2),
learnable_decay=True, dynamic_output_scale=True,
use_attention=False, use_log_objective=True,
num_gradient_scales=4, zero_init_lr_weights=True,
use_log_means_squared=True, use_relative_lr=True,
use_extreme_indicator=False, max_log_lr=33,
obj_train_max_multiplier=-1, use_problem_lr_mean=False,
use_gradient_shortcut=False, use_lr_shortcut=False,
use_grad_products=False, use_multiple_scale_decays=False,
learnable_inp_decay=True, learnable_rnn_init=True,
random_seed=None, **kwargs):
"""Initializes the RNN per-parameter optimizer.
The hierarchy consists of up to three levels:
Level 0: per parameter RNN
Level 1: per tensor RNN
Level 2: global RNN
Args:
level_sizes: list or tuple with 1, 2, or 3 integers, the number of units
in each RNN in the hierarchy (level0, level1, level2).
length 1: only coordinatewise rnn's will be used
length 2: coordinatewise and tensor-level rnn's will be used
length 3: a single global-level rnn will be used in addition to
coordinatewise and tensor-level
init_lr_range: the range in which to initialize the learning rates
learnable_decay: whether to learn weights that dynamically modulate the
input scale via RMS style decay
dynamic_output_scale: whether to learn weights that dynamically modulate
the output scale
use_attention: whether to use attention to train the optimizer
use_log_objective: whether to train on the log of the objective
num_gradient_scales: the number of scales to use for gradient history
zero_init_lr_weights: whether to initialize the lr weights to zero
use_log_means_squared: whether to track the log of the means_squared,
used as a measure of signal vs. noise in gradient.
use_relative_lr: whether to use the relative learning rate as an
input during training (requires learnable_decay=True)
use_extreme_indicator: whether to use the extreme indicator for learning
rates as an input during training (requires learnable_decay=True)
max_log_lr: the maximum log learning rate allowed during train or test
obj_train_max_multiplier: max objective increase during a training run
use_problem_lr_mean: whether to use the mean over all learning rates in
the problem when calculating the relative learning rate as opposed to
the per-tensor mean
use_gradient_shortcut: Whether to add a learned affine projection of the
gradient to the update delta in addition to the gradient function
computed by the RNN
use_lr_shortcut: Whether to add as input the difference between the log lr
and the desired log lr (1e-3)
use_grad_products: Whether to use gradient products in the rnn input.
Only applicable if num_gradient_scales > 1
use_multiple_scale_decays: Whether to use multiple scales for the scale
decay, as with input decay
learnable_inp_decay: Whether to learn the input decay weights and bias.
learnable_rnn_init: Whether to learn the RNN state initialization.
random_seed: Random seed for random variable initializers. (Default: None)
**kwargs: args passed to TrainableOptimizer's constructor
Raises:
ValueError: If level_sizes is not a length 1, 2, or 3 list.
ValueError: If there are any non-integer sizes in level_sizes.
ValueError: If the init lr range is not of length 2.
ValueError: If the init lr range is not a valid range (min > max).
"""
if len(level_sizes) not in [1, 2, 3]:
raise ValueError("HierarchicalRNN only supports 1, 2, or 3 levels in the "
"hierarchy, but {} were requested.".format(
len(level_sizes)))
if any(not isinstance(level, int) for level in level_sizes):
raise ValueError("Level sizes must be integer values, were {}".format(
level_sizes))
if len(init_lr_range) != 2:
raise ValueError(
"Initial LR range must be len 2, was {}".format(len(init_lr_range)))
if init_lr_range[0] > init_lr_range[1]:
raise ValueError("Initial LR range min is greater than max.")
self.learnable_decay = learnable_decay
self.dynamic_output_scale = dynamic_output_scale
self.use_attention = use_attention
self.use_log_objective = use_log_objective
self.num_gradient_scales = num_gradient_scales
self.zero_init_lr_weights = zero_init_lr_weights
self.use_log_means_squared = use_log_means_squared
self.use_relative_lr = use_relative_lr
self.use_extreme_indicator = use_extreme_indicator
self.max_log_lr = max_log_lr
self.use_problem_lr_mean = use_problem_lr_mean
self.use_gradient_shortcut = use_gradient_shortcut
self.use_lr_shortcut = use_lr_shortcut
self.use_grad_products = use_grad_products
self.use_multiple_scale_decays = use_multiple_scale_decays
self.learnable_inp_decay = learnable_inp_decay
self.learnable_rnn_init = learnable_rnn_init
self.random_seed = random_seed
self.num_layers = len(level_sizes)
self.init_lr_range = init_lr_range
self.reuse_vars = None
self.reuse_global_state = None
self.cells = []
self.init_vectors = []
with tf.variable_scope(opt.OPTIMIZER_SCOPE):
self._initialize_rnn_cells(level_sizes)
# get the cell size for the per-parameter RNN (Level 0)
cell_size = level_sizes[0]
# Random normal initialization scaled by the output size. This is the
# scale for the RNN *readouts*. RNN internal weight scale is set in the
# BiasGRUCell call.
scale_factor = FLAGS.hrnn_rnn_readout_scale / math.sqrt(cell_size)
scaled_init = tf.random_normal_initializer(0., scale_factor,
seed=self.random_seed)
# weights for projecting the hidden state to a parameter update
self.update_weights = tf.get_variable("update_weights",
shape=(cell_size, 1),
initializer=scaled_init)
if self.use_attention:
# weights for projecting the hidden state to the location at which the
# gradient is attended
self.attention_weights = tf.get_variable(
"attention_weights",
initializer=self.update_weights.initialized_value())
# weights for projecting the hidden state to the RMS decay term
self._initialize_scale_decay((cell_size, 1), scaled_init)
self._initialize_input_decay((cell_size, 1), scaled_init)
self._initialize_lr((cell_size, 1), scaled_init)
state_keys = ["parameter", "layer", "scl_decay", "inp_decay", "true_param"]
if self.dynamic_output_scale:
state_keys.append("log_learning_rate")
for i in range(self.num_gradient_scales):
state_keys.append("grad_accum{}".format(i + 1))
state_keys.append("ms{}".format(i + 1))
super(HierarchicalRNN, self).__init__(
"hRNN", state_keys, use_attention=use_attention,
use_log_objective=use_log_objective,
obj_train_max_multiplier=obj_train_max_multiplier, **kwargs)
def _initialize_rnn_cells(self, level_sizes):
"""Initializes the RNN cells to use in the hierarchical RNN."""
# RNN Cell layers (0 -> lowest, 1 -> middle, 2 -> global)
for level in range(self.num_layers):
scope = "Level{}_RNN".format(level)
with tf.variable_scope(scope):
hcell = rnn_cells.BiasGRUCell(
level_sizes[level],
scale=FLAGS.biasgrucell_scale,
gate_bias_init=FLAGS.biasgrucell_gate_bias_init,
random_seed=self.random_seed)
self.cells.append(hcell)
if self.learnable_rnn_init:
self.init_vectors.append(tf.Variable(
tf.random_uniform([1, hcell.state_size], -1., 1.,
seed=self.random_seed),
name="init_vector"))
else:
self.init_vectors.append(
tf.random_uniform([1, hcell.state_size], -1., 1.,
seed=self.random_seed))
def _initialize_scale_decay(self, weights_tensor_shape, scaled_init):
"""Initializes the scale decay weights and bias variables or tensors.
Args:
weights_tensor_shape: The shape the weight tensor should take.
scaled_init: The scaled initialization for the weights tensor.
"""
if self.learnable_decay:
self.scl_decay_weights = tf.get_variable("scl_decay_weights",
shape=weights_tensor_shape,
initializer=scaled_init)
scl_decay_bias_init = tf.constant_initializer(
FLAGS.scale_decay_bias_init)
self.scl_decay_bias = tf.get_variable("scl_decay_bias",
shape=(1,),
initializer=scl_decay_bias_init)
else:
self.scl_decay_weights = tf.zeros_like(self.update_weights)
self.scl_decay_bias = tf.log(0.93 / (1. - 0.93))
def _initialize_input_decay(self, weights_tensor_shape, scaled_init):
"""Initializes the input scale decay weights and bias variables or tensors.
Args:
weights_tensor_shape: The shape the weight tensor should take.
scaled_init: The scaled initialization for the weights tensor.
"""
if (self.learnable_decay and self.num_gradient_scales > 1 and
self.learnable_inp_decay):
self.inp_decay_weights = tf.get_variable("inp_decay_weights",
shape=weights_tensor_shape,
initializer=scaled_init)
inp_decay_bias_init = tf.constant_initializer(
FLAGS.hrnn_default_decay_var_init)
self.inp_decay_bias = tf.get_variable("inp_decay_bias",
shape=(1,),
initializer=inp_decay_bias_init)
else:
self.inp_decay_weights = tf.zeros_like(self.update_weights)
self.inp_decay_bias = tf.log(0.89 / (1. - 0.89))
def _initialize_lr(self, weights_tensor_shape, scaled_init):
"""Initializes the learning rate weights and bias variables or tensors.
Args:
weights_tensor_shape: The shape the weight tensor should take.
scaled_init: The scaled initialization for the weights tensor.
"""
if self.dynamic_output_scale:
zero_init = tf.constant_initializer(0.)
wt_init = zero_init if self.zero_init_lr_weights else scaled_init
self.lr_weights = tf.get_variable("learning_rate_weights",
shape=weights_tensor_shape,
initializer=wt_init)
self.lr_bias = tf.get_variable("learning_rate_bias", shape=(1,),
initializer=zero_init)
else:
self.lr_weights = tf.zeros_like(self.update_weights)
self.lr_bias = tf.zeros([1, 1])
def _initialize_state(self, var):
"""Return a dictionary mapping names of state variables to their values."""
var_vectorized = tf.reshape(var, [-1, 1])
ndim = var_vectorized.get_shape().as_list()[0]
state = {
# parameter init tensor is [var_ndim x layer0_cell_size]
"parameter": tf.ones([ndim, 1]) * self.init_vectors[0],
"scl_decay": tf.zeros_like(var_vectorized),
"inp_decay": tf.zeros_like(var_vectorized),
"true_param": var,
}
if self.num_layers > 1:
# layer init tensor is [1 x layer1_cell_size]
state["layer"] = tf.ones([1, 1]) * self.init_vectors[1]
if self.dynamic_output_scale:
min_lr = self.init_lr_range[0]
max_lr = self.init_lr_range[1]
if min_lr == max_lr:
log_init_lr = tf.log(min_lr * tf.ones_like(var_vectorized))
else:
# Use a random offset to increase the likelihood that the average of the
# LRs for this variable is different from the LRs for other variables.
actual_vals = tf.random_uniform(var_vectorized.get_shape().as_list(),
np.log(min_lr) / 2.,
np.log(max_lr) / 2.,
seed=self.random_seed)
offset = tf.random_uniform((), np.log(min_lr) / 2., np.log(max_lr) / 2.,
seed=self.random_seed)
log_init_lr = actual_vals + offset
# Clip the log learning rate to the flag at the top end, and to
# (log(min int32) - 1) at the bottom
clipped = tf.clip_by_value(log_init_lr, -33, self.max_log_lr)
state["log_learning_rate"] = clipped
for i in range(self.num_gradient_scales):
state["grad_accum{}".format(i + 1)] = tf.zeros_like(var_vectorized)
state["ms{}".format(i + 1)] = tf.zeros_like(var_vectorized)
return state
def _initialize_global_state(self):
if self.num_layers < 3:
return []
rnn_global_init = tf.ones([1, 1]) * self.init_vectors[2]
return [rnn_global_init]
def _compute_updates(self, params, grads, states, global_state):
# Store the updated parameters and states.
updated_params = []
updated_attention = []
updated_states = []
with tf.variable_scope(opt.OPTIMIZER_SCOPE):
mean_log_lr = self._compute_mean_log_lr(states)
# Iterate over the layers.
for param, grad_unflat, state in zip(params, grads, states):
with tf.variable_scope("PerTensor", reuse=self.reuse_vars):
self.reuse_vars = True
grad = tf.reshape(grad_unflat, [-1, 1])
# Create the RNN input. We will optionally extend it with additional
# features such as curvature and gradient signal vs. noise.
(grads_scaled, mean_squared_gradients,
grads_accum) = self._compute_scaled_and_ms_grads(grad, state)
rnn_input = [g for g in grads_scaled]
self._extend_rnn_input(rnn_input, state, grads_scaled,
mean_squared_gradients, mean_log_lr)
# Concatenate any features we've collected.
rnn_input_tensor = tf.concat(rnn_input, 1)
layer_state, new_param_state = self._update_rnn_cells(
state, global_state, rnn_input_tensor,
len(rnn_input) != len(grads_scaled))
(scl_decay, inp_decay, new_log_lr, update_step, lr_attend,
attention_delta) = self._compute_rnn_state_projections(
state, new_param_state, grads_scaled)
# Apply updates and store state variables.
if self.use_attention:
truth = state["true_param"]
updated_param = truth - update_step
attention_step = tf.reshape(lr_attend * attention_delta,
truth.get_shape())
updated_attention.append(truth - attention_step)
else:
updated_param = param - update_step
updated_attention.append(updated_param)
updated_params.append(updated_param)
# Collect the new state.
new_state = {
"parameter": new_param_state,
"scl_decay": scl_decay,
"inp_decay": inp_decay,
"true_param": updated_param,
}
if layer_state is not None:
new_state["layer"] = layer_state
if self.dynamic_output_scale:
new_state["log_learning_rate"] = new_log_lr
for i in range(self.num_gradient_scales):
new_state["grad_accum{}".format(i + 1)] = grads_accum[i]
new_state["ms{}".format(i + 1)] = mean_squared_gradients[i]
updated_states.append(new_state)
updated_global_state = self._compute_updated_global_state([layer_state],
global_state)
return (updated_params, updated_states, [updated_global_state],
updated_attention)
def _compute_mean_log_lr(self, states):
"""Computes the mean log learning rate across all variables."""
if self.use_problem_lr_mean and self.use_relative_lr:
sum_log_lr = 0.
count_log_lr = 0.
for state in states:
sum_log_lr += tf.reduce_sum(state["log_learning_rate"])
# Note: get_shape().num_elements()=num elements in the original tensor.
count_log_lr += state["log_learning_rate"].get_shape().num_elements()
return sum_log_lr / count_log_lr
def _compute_scaled_and_ms_grads(self, grad, state):
"""Computes the scaled gradient and the mean squared gradients.
Gradients are also accumulated across different timescales if appropriate.
Args:
grad: The gradient tensor for this layer.
state: The optimizer state for this layer.
Returns:
The scaled gradients, mean squared gradients, and accumulated gradients.
"""
input_decays = [state["inp_decay"]]
scale_decays = [state["scl_decay"]]
if self.use_multiple_scale_decays and self.num_gradient_scales > 1:
for i in range(self.num_gradient_scales - 1):
scale_decays.append(tf.sqrt(scale_decays[i]))
for i in range(self.num_gradient_scales - 1):
# Each accumulator on twice the timescale of the one before.
input_decays.append(tf.sqrt(input_decays[i]))
grads_accum = []
grads_scaled = []
mean_squared_gradients = []
# populate the scaled gradients and associated mean_squared values
if self.num_gradient_scales > 0:
for i, decay in enumerate(input_decays):
if self.num_gradient_scales == 1:
# We don't accumulate if no scales, just take the current gradient.
grad_accum = grad
else:
# The state vars are 1-indexed.
old_accum = state["grad_accum{}".format(i + 1)]
grad_accum = grad * (1. - decay) + old_accum * decay
grads_accum.append(grad_accum)
sd = scale_decays[i if self.use_multiple_scale_decays else 0]
grad_scaled, ms = utils.rms_scaling(grad_accum, sd,
state["ms{}".format(i + 1)],
update_ms=True)
grads_scaled.append(grad_scaled)
mean_squared_gradients.append(ms)
return grads_scaled, mean_squared_gradients, grads_accum
def _extend_rnn_input(self, rnn_input, state, grads_scaled,
mean_squared_gradients, mean_log_lr):
"""Computes additional rnn inputs and adds them to the rnn_input list."""
if self.num_gradient_scales > 1 and self.use_grad_products:
# This gives a measure of curvature relative to input averaging
# lengthscale and to the learning rate
grad_products = [a * b for a, b in
zip(grads_scaled[:-1], grads_scaled[1:])]
rnn_input.extend([g for g in grad_products])
if self.use_log_means_squared:
log_means_squared = [tf.log(ms + 1e-16)
for ms in mean_squared_gradients]
avg = tf.reduce_mean(log_means_squared, axis=0)
# This gives a measure of the signal vs. noise contribution to the
# gradient, at the current averaging lengthscale. If all the noise
# is averaged out, and if updates are small, these will be 0.
mean_log_means_squared = [m - avg for m in log_means_squared]
rnn_input.extend([m for m in mean_log_means_squared])
if self.use_relative_lr or self.use_extreme_indicator:
if not self.dynamic_output_scale:
raise Exception("Relative LR and Extreme Indicator features "
"require dynamic_output_scale to be set to True.")
log_lr_vec = tf.reshape(state["log_learning_rate"], [-1, 1])
if self.use_relative_lr:
if self.use_problem_lr_mean:
# Learning rate of this dimension vs. rest of target problem.
relative_lr = log_lr_vec - mean_log_lr
else:
# Learning rate of this dimension vs. rest of tensor.
relative_lr = log_lr_vec - tf.reduce_mean(log_lr_vec)
rnn_input.append(relative_lr)
if self.use_extreme_indicator:
# Indicator of extremely large or extremely small learning rate.
extreme_indicator = (tf.nn.relu(log_lr_vec - tf.log(1.)) -
tf.nn.relu(tf.log(1e-6) - log_lr_vec))
rnn_input.append(extreme_indicator)
if self.use_lr_shortcut:
log_lr_vec = tf.reshape(state["log_learning_rate"], [-1, 1])
rnn_input.append(log_lr_vec - tf.log(1e-3))
def _update_rnn_cells(self, state, global_state, rnn_input_tensor,
use_additional_features):
"""Updates the component RNN cells with the given state and tensor.
Args:
state: The current state of the optimizer.
global_state: The current global RNN state.
rnn_input_tensor: The input tensor to the RNN.
use_additional_features: Whether the rnn input tensor contains additional
features beyond the scaled gradients (affects whether the rnn input
tensor is used as input to the RNN.)
Returns:
layer_state: The new state of the per-tensor RNN.
new_param_state: The new state of the per-parameter RNN.
"""
# lowest level (per parameter)
# input -> gradient for this parameter
# bias -> output from the layer RNN
with tf.variable_scope("Layer0_RNN"):
total_bias = None
if self.num_layers > 1:
sz = 3 * self.cells[0].state_size # size of the concatenated bias
param_bias = utils.affine([state["layer"]], sz,
scope="Param/Affine",
scale=FLAGS.hrnn_affine_scale,
random_seed=self.random_seed)
total_bias = param_bias
if self.num_layers == 3:
global_bias = utils.affine(global_state, sz,
scope="Global/Affine",
scale=FLAGS.hrnn_affine_scale,
random_seed=self.random_seed)
total_bias += global_bias
new_param_state, _ = self.cells[0](
rnn_input_tensor, state["parameter"], bias=total_bias)
if self.num_layers > 1:
# middle level (per layer)
# input -> average hidden state from each parameter in this layer
# bias -> output from the RNN at the global level
with tf.variable_scope("Layer1_RNN"):
if not use_additional_features:
# Restore old behavior and only add the mean of the new params.
layer_input = tf.reduce_mean(new_param_state, 0, keep_dims=True)
else:
layer_input = tf.reduce_mean(
tf.concat((new_param_state, rnn_input_tensor), 1), 0,
keep_dims=True)
if self.num_layers == 3:
sz = 3 * self.cells[1].state_size
layer_bias = utils.affine(global_state, sz,
scale=FLAGS.hrnn_affine_scale,
random_seed=self.random_seed)
layer_state, _ = self.cells[1](
layer_input, state["layer"], bias=layer_bias)
else:
layer_state, _ = self.cells[1](layer_input, state["layer"])
else:
layer_state = None
return layer_state, new_param_state
def _compute_rnn_state_projections(self, state, new_param_state,
grads_scaled):
"""Computes the RNN state-based updates to parameters and update steps."""
# Compute the update direction (a linear projection of the RNN output).
update_weights = self.update_weights
update_delta = utils.project(new_param_state, update_weights)
if self.use_gradient_shortcut:
# Include an affine projection of just the direction of the gradient
# so that RNN hidden states are freed up to store more complex
# functions of the gradient and other parameters.
grads_scaled_tensor = tf.concat([g for g in grads_scaled], 1)
update_delta += utils.affine(grads_scaled_tensor, 1,
scope="GradsToDelta",
include_bias=False,
vec_mean=1. / len(grads_scaled),
random_seed=self.random_seed)
if self.dynamic_output_scale:
denom = tf.sqrt(tf.reduce_mean(update_delta ** 2) + 1e-16)
update_delta /= denom
if self.use_attention:
attention_weights = self.attention_weights
attention_delta = utils.project(new_param_state,
attention_weights)
if self.use_gradient_shortcut:
attention_delta += utils.affine(grads_scaled_tensor, 1,
scope="GradsToAttnDelta",
include_bias=False,
vec_mean=1. / len(grads_scaled),
random_seed=self.random_seed)
if self.dynamic_output_scale:
attention_delta /= tf.sqrt(
tf.reduce_mean(attention_delta ** 2) + 1e-16)
else:
attention_delta = None
# The updated decay is an affine projection of the hidden state.
scl_decay = utils.project(new_param_state, self.scl_decay_weights,
bias=self.scl_decay_bias,
activation=tf.nn.sigmoid)
# This is only used if learnable_decay and num_gradient_scales > 1
inp_decay = utils.project(new_param_state, self.inp_decay_weights,
bias=self.inp_decay_bias,
activation=tf.nn.sigmoid)
# Also update the learning rate.
lr_param, lr_attend, new_log_lr = self._compute_new_learning_rate(
state, new_param_state)
update_step = tf.reshape(lr_param * update_delta,
state["true_param"].get_shape())
return (scl_decay, inp_decay, new_log_lr, update_step, lr_attend,
attention_delta)
def _compute_new_learning_rate(self, state, new_param_state):
if self.dynamic_output_scale:
# Compute the change in learning rate (an affine projection of the
# RNN state, passed through a sigmoid or log depending on flags).
# Update the learning rate, w/ momentum.
lr_change = utils.project(new_param_state, self.lr_weights,
bias=self.lr_bias)
step_log_lr = state["log_learning_rate"] + lr_change
# Clip the log learning rate to the flag at the top end, and to
# (log(min int32) - 1) at the bottom
# Check out this hack: we want to be able to compute the gradient
# of the downstream result w.r.t lr weights and bias, even if the
# value of step_log_lr is outside the clip range. So we clip,
# subtract off step_log_lr, and wrap all that in a stop_gradient so
# TF never tries to take the gradient of the clip... or the
# subtraction. Then we add BACK step_log_lr so that downstream still
# receives the clipped value. But the GRADIENT of step_log_lr will
# be the gradient of the unclipped value, which we added back in
# after stop_gradients.
step_log_lr += tf.stop_gradient(
tf.clip_by_value(step_log_lr, -33, self.max_log_lr)
- step_log_lr)
lr_momentum_logit = tf.get_variable(
"learning_rate_momentum_logit",
initializer=FLAGS.learning_rate_momentum_logit_init)
lrm = tf.nn.sigmoid(lr_momentum_logit)
new_log_lr = (lrm * state["log_learning_rate"] +
(1. - lrm) * step_log_lr)
param_stepsize_offset = tf.get_variable("param_stepsize_offset",
initializer=-1.)
lr_param = tf.exp(step_log_lr + param_stepsize_offset)
lr_attend = tf.exp(step_log_lr) if self.use_attention else lr_param
else:
# Dynamic output scale is off, LR param is always 1.
lr_param = 2. * utils.project(new_param_state, self.lr_weights,
bias=self.lr_bias,
activation=tf.nn.sigmoid)
new_log_lr = None
lr_attend = lr_param
return lr_param, lr_attend, new_log_lr
def _compute_updated_global_state(self, layer_states, global_state):
"""Computes the new global state gives the layers states and old state.
Args:
layer_states: The current layer states.
global_state: The old global state.
Returns:
The updated global state.
"""
updated_global_state = []
if self.num_layers == 3:
# highest (global) layer
# input -> average hidden state from each layer-specific RNN
# bias -> None
with tf.variable_scope("Layer2_RNN", reuse=self.reuse_global_state):
self.reuse_global_state = True
global_input = tf.reduce_mean(tf.concat(layer_states, 0), 0,
keep_dims=True)
updated_global_state, _ = self.cells[2](global_input, global_state[0])
return updated_global_state
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""Overwrites the tf.train.Optimizer interface for applying gradients."""
# Pull out the variables.
grads_and_vars = tuple(grads_and_vars) # Make sure repeat iteration works.
for g, v in grads_and_vars:
if not isinstance(g, (tf.Tensor, tf.IndexedSlices, type(None))):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
if not isinstance(v, tf.Variable):
raise TypeError(
"Variable must be a tf.Variable: %s" % v)
if g is not None:
self._assert_valid_dtypes([g, v])
var_list = [v for g, v in grads_and_vars if g is not None]
if not var_list:
raise ValueError("No gradients provided for any variable: %s" %
(grads_and_vars,))
# Create slots for the variables.
with tf.control_dependencies(None):
self._create_slots(var_list)
# Store update ops in this list.
with tf.op_scope([], name, self._name) as name:
# Prepare the global state.
with tf.variable_scope(self._name, reuse=self.reuse_global_state):
gs = self._initialize_global_state()
if gs:
global_state = [tf.get_variable("global_state", initializer=gs[0])]
else:
global_state = []
# Get the states for each variable in the list.
states = [{key: self.get_slot(var, key) for key in self.get_slot_names()}
for var in var_list]
# Compute updated values.
grads, params = zip(*grads_and_vars)
args = (params, grads, states, global_state)
updates = self._compute_updates(*args)
new_params, new_states, new_global_state, new_attention = updates
# Assign op for new global state.
update_ops = [tf.assign(gs, ngs)
for gs, ngs in zip(global_state, new_global_state)]
# Create the assign ops for the params and state variables.
args = (params, states, new_params, new_attention, new_states)
for var, state, new_var, new_var_attend, new_state in zip(*args):
# Assign updates to the state variables.
state_assign_ops = [tf.assign(state_var, new_state[key])
for key, state_var in state.items()]
# Update the parameter.
with tf.control_dependencies(state_assign_ops):
if self.use_attention:
# Assign to the attended location, rather than the actual location
# so that the gradients are computed where attention is.
param_update_op = var.assign(new_var_attend)
else:
param_update_op = var.assign(new_var)
with tf.name_scope("update_" + var.op.name): #, tf.colocate_with(var):
update_ops.append(param_update_op)
real_params = [self.get_slot(var, "true_param") for var in var_list]
if global_step is None:
# NOTE: if using the optimizer in a non-test-optimizer setting (e.g.
# on Inception), remove the real_params return value. Otherwise
# the code will throw an error.
return self._finish(update_ops, name), real_params
else:
with tf.control_dependencies([self._finish(update_ops, "update")]):
return state_ops.assign_add(global_step, 1, name=name).op, real_params
|