Spaces:
Running
Running
File size: 32,528 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Neural GPU Model."""
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.framework import function
import data_utils as data
do_jit = False # Gives more speed but experimental for now.
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
def conv_linear(args, kw, kh, nin, nout, rate, do_bias, bias_start, prefix):
"""Convolutional linear map."""
if not isinstance(args, (list, tuple)):
args = [args]
with tf.variable_scope(prefix):
with tf.device("/cpu:0"):
k = tf.get_variable("CvK", [kw, kh, nin, nout])
if len(args) == 1:
arg = args[0]
else:
arg = tf.concat(axis=3, values=args)
res = tf.nn.convolution(arg, k, dilation_rate=(rate, 1), padding="SAME")
if not do_bias: return res
with tf.device("/cpu:0"):
bias_term = tf.get_variable(
"CvB", [nout], initializer=tf.constant_initializer(bias_start))
bias_term = tf.reshape(bias_term, [1, 1, 1, nout])
return res + bias_term
def sigmoid_cutoff(x, cutoff):
"""Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
y = tf.sigmoid(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d), name="cutoff_min")
@function.Defun(tf.float32, noinline=True)
def sigmoid_cutoff_12(x):
"""Sigmoid with cutoff 1.2, specialized for speed and memory use."""
y = tf.sigmoid(x)
return tf.minimum(1.0, tf.maximum(0.0, 1.2 * y - 0.1), name="cutoff_min_12")
@function.Defun(tf.float32, noinline=True)
def sigmoid_hard(x):
"""Hard sigmoid."""
return tf.minimum(1.0, tf.maximum(0.0, 0.25 * x + 0.5))
def place_at14(decided, selected, it):
"""Place selected at it-th coordinate of decided, dim=1 of 4."""
slice1 = decided[:, :it, :, :]
slice2 = decided[:, it + 1:, :, :]
return tf.concat(axis=1, values=[slice1, selected, slice2])
def place_at13(decided, selected, it):
"""Place selected at it-th coordinate of decided, dim=1 of 3."""
slice1 = decided[:, :it, :]
slice2 = decided[:, it + 1:, :]
return tf.concat(axis=1, values=[slice1, selected, slice2])
def tanh_cutoff(x, cutoff):
"""Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
y = tf.tanh(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))
@function.Defun(tf.float32, noinline=True)
def tanh_hard(x):
"""Hard tanh."""
return tf.minimum(1.0, tf.maximum(0.0, x))
def layer_norm(x, nmaps, prefix, epsilon=1e-5):
"""Layer normalize the 4D tensor x, averaging over the last dimension."""
with tf.variable_scope(prefix):
scale = tf.get_variable("layer_norm_scale", [nmaps],
initializer=tf.ones_initializer())
bias = tf.get_variable("layer_norm_bias", [nmaps],
initializer=tf.zeros_initializer())
mean, variance = tf.nn.moments(x, [3], keep_dims=True)
norm_x = (x - mean) / tf.sqrt(variance + epsilon)
return norm_x * scale + bias
def conv_gru(inpts, mem, kw, kh, nmaps, rate, cutoff, prefix, do_layer_norm,
args_len=None):
"""Convolutional GRU."""
def conv_lin(args, suffix, bias_start):
total_args_len = args_len or len(args) * nmaps
res = conv_linear(args, kw, kh, total_args_len, nmaps, rate, True,
bias_start, prefix + "/" + suffix)
if do_layer_norm:
return layer_norm(res, nmaps, prefix + "/" + suffix)
else:
return res
if cutoff == 1.2:
reset = sigmoid_cutoff_12(conv_lin(inpts + [mem], "r", 1.0))
gate = sigmoid_cutoff_12(conv_lin(inpts + [mem], "g", 1.0))
elif cutoff > 10:
reset = sigmoid_hard(conv_lin(inpts + [mem], "r", 1.0))
gate = sigmoid_hard(conv_lin(inpts + [mem], "g", 1.0))
else:
reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
if cutoff > 10:
candidate = tanh_hard(conv_lin(inpts + [reset * mem], "c", 0.0))
else:
# candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
return gate * mem + (1 - gate) * candidate
CHOOSE_K = 256
def memory_call(q, l, nmaps, mem_size, vocab_size, num_gpus, update_mem):
raise ValueError("Fill for experiments with additional memory structures.")
def memory_run(step, nmaps, mem_size, batch_size, vocab_size,
global_step, do_training, update_mem, decay_factor, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it):
"""Run memory."""
q = step[:, 0, it, :]
mlabels = gpu_targets_tn[:, it, 0]
res, mask, mem_loss = memory_call(
q, mlabels, nmaps, mem_size, vocab_size, num_gpus, update_mem)
res = tf.gather(target_emb_weights, res) * tf.expand_dims(mask[:, 0], 1)
# Mix gold and original in the first steps, 20% later.
gold = tf.nn.dropout(tf.gather(target_emb_weights, mlabels), 0.7)
use_gold = 1.0 - tf.cast(global_step, tf.float32) / (1000. * decay_factor)
use_gold = tf.maximum(use_gold, 0.2) * do_training
mem = tf.cond(tf.less(tf.random_uniform([]), use_gold),
lambda: use_gold * gold + (1.0 - use_gold) * res,
lambda: res)
mem = tf.reshape(mem, [-1, 1, 1, nmaps])
return mem, mem_loss, update_mem
@tf.RegisterGradient("CustomIdG")
def _custom_id_grad(_, grads):
return grads
def quantize(t, quant_scale, max_value=1.0):
"""Quantize a tensor t with each element in [-max_value, max_value]."""
t = tf.minimum(max_value, tf.maximum(t, -max_value))
big = quant_scale * (t + max_value) + 0.5
with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
res = (tf.floor(big) / quant_scale) - max_value
return res
def quantize_weights_op(quant_scale, max_value):
ops = [v.assign(quantize(v, quant_scale, float(max_value)))
for v in tf.trainable_variables()]
return tf.group(*ops)
def autoenc_quantize(x, nbits, nmaps, do_training, layers=1):
"""Autoencoder into nbits vectors of bits, using noise and sigmoids."""
enc_x = tf.reshape(x, [-1, nmaps])
for i in xrange(layers - 1):
enc_x = tf.layers.dense(enc_x, nmaps, name="autoenc_%d" % i)
enc_x = tf.layers.dense(enc_x, nbits, name="autoenc_%d" % (layers - 1))
noise = tf.truncated_normal(tf.shape(enc_x), stddev=2.0)
dec_x = sigmoid_cutoff_12(enc_x + noise * do_training)
dec_x = tf.reshape(dec_x, [-1, nbits])
for i in xrange(layers):
dec_x = tf.layers.dense(dec_x, nmaps, name="autodec_%d" % i)
return tf.reshape(dec_x, tf.shape(x))
def make_dense(targets, noclass, low_param):
"""Move a batch of targets to a dense 1-hot representation."""
low = low_param / float(noclass - 1)
high = 1.0 - low * (noclass - 1)
targets = tf.cast(targets, tf.int64)
return tf.one_hot(targets, depth=noclass, on_value=high, off_value=low)
def reorder_beam(beam_size, batch_size, beam_val, output, is_first,
tensors_to_reorder):
"""Reorder to minimize beam costs."""
# beam_val is [batch_size x beam_size]; let b = batch_size * beam_size
# decided is len x b x a x b
# output is b x out_size; step is b x len x a x b;
outputs = tf.split(axis=0, num_or_size_splits=beam_size, value=tf.nn.log_softmax(output))
all_beam_vals, all_beam_idx = [], []
beam_range = 1 if is_first else beam_size
for i in xrange(beam_range):
top_out, top_out_idx = tf.nn.top_k(outputs[i], k=beam_size)
cur_beam_val = beam_val[:, i]
top_out = tf.Print(top_out, [top_out, top_out_idx, beam_val, i,
cur_beam_val], "GREPO", summarize=8)
all_beam_vals.append(top_out + tf.expand_dims(cur_beam_val, 1))
all_beam_idx.append(top_out_idx)
all_beam_idx = tf.reshape(tf.transpose(tf.concat(axis=1, values=all_beam_idx), [1, 0]),
[-1])
top_beam, top_beam_idx = tf.nn.top_k(tf.concat(axis=1, values=all_beam_vals), k=beam_size)
top_beam_idx = tf.Print(top_beam_idx, [top_beam, top_beam_idx],
"GREP", summarize=8)
reordered = [[] for _ in xrange(len(tensors_to_reorder) + 1)]
top_out_idx = []
for i in xrange(beam_size):
which_idx = top_beam_idx[:, i] * batch_size + tf.range(batch_size)
top_out_idx.append(tf.gather(all_beam_idx, which_idx))
which_beam = top_beam_idx[:, i] / beam_size # [batch]
which_beam = which_beam * batch_size + tf.range(batch_size)
reordered[0].append(tf.gather(output, which_beam))
for i, t in enumerate(tensors_to_reorder):
reordered[i + 1].append(tf.gather(t, which_beam))
new_tensors = [tf.concat(axis=0, values=t) for t in reordered]
top_out_idx = tf.concat(axis=0, values=top_out_idx)
return (top_beam, new_tensors[0], top_out_idx, new_tensors[1:])
class NeuralGPU(object):
"""Neural GPU Model."""
def __init__(self, nmaps, vec_size, niclass, noclass, dropout,
max_grad_norm, cutoff, nconvs, kw, kh, height, mem_size,
learning_rate, min_length, num_gpus, num_replicas,
grad_noise_scale, sampling_rate, act_noise=0.0, do_rnn=False,
atrous=False, beam_size=1, backward=True, do_layer_norm=False,
autoenc_decay=1.0):
# Feeds for parameters and ops to update them.
self.nmaps = nmaps
if backward:
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.cur_length = tf.Variable(min_length, trainable=False)
self.cur_length_incr_op = self.cur_length.assign_add(1)
self.lr = tf.Variable(learning_rate, trainable=False)
self.lr_decay_op = self.lr.assign(self.lr * 0.995)
self.do_training = tf.placeholder(tf.float32, name="do_training")
self.update_mem = tf.placeholder(tf.int32, name="update_mem")
self.noise_param = tf.placeholder(tf.float32, name="noise_param")
# Feeds for inputs, targets, outputs, losses, etc.
self.input = tf.placeholder(tf.int32, name="inp")
self.target = tf.placeholder(tf.int32, name="tgt")
self.prev_step = tf.placeholder(tf.float32, name="prev_step")
gpu_input = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.input)
gpu_target = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.target)
gpu_prev_step = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.prev_step)
batch_size = tf.shape(gpu_input[0])[0]
if backward:
adam_lr = 0.005 * self.lr
adam = tf.train.AdamOptimizer(adam_lr, epsilon=1e-3)
def adam_update(grads):
return adam.apply_gradients(zip(grads, tf.trainable_variables()),
global_step=self.global_step,
name="adam_update")
# When switching from Adam to SGD we perform reverse-decay.
if backward:
global_step_float = tf.cast(self.global_step, tf.float32)
sampling_decay_exponent = global_step_float / 100000.0
sampling_decay = tf.maximum(0.05, tf.pow(0.5, sampling_decay_exponent))
self.sampling = sampling_rate * 0.05 / sampling_decay
else:
self.sampling = tf.constant(0.0)
# Cache variables on cpu if needed.
if num_replicas > 1 or num_gpus > 1:
with tf.device("/cpu:0"):
caching_const = tf.constant(0)
tf.get_variable_scope().set_caching_device(caching_const.op.device)
# partitioner = tf.variable_axis_size_partitioner(1024*256*4)
# tf.get_variable_scope().set_partitioner(partitioner)
def gpu_avg(l):
if l[0] is None:
for elem in l:
assert elem is None
return 0.0
if len(l) < 2:
return l[0]
return sum(l) / float(num_gpus)
self.length_tensor = tf.placeholder(tf.int32, name="length")
with tf.device("/cpu:0"):
emb_weights = tf.get_variable(
"embedding", [niclass, vec_size],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
if beam_size > 0:
target_emb_weights = tf.get_variable(
"target_embedding", [noclass, nmaps],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
e0 = tf.scatter_update(emb_weights,
tf.constant(0, dtype=tf.int32, shape=[1]),
tf.zeros([1, vec_size]))
output_w = tf.get_variable("output_w", [nmaps, noclass], tf.float32)
def conv_rate(layer):
if atrous:
return 2**layer
return 1
# pylint: disable=cell-var-from-loop
def enc_step(step):
"""Encoder step."""
if autoenc_decay < 1.0:
quant_step = autoenc_quantize(step, 16, nmaps, self.do_training)
if backward:
exp_glob = tf.train.exponential_decay(1.0, self.global_step - 10000,
1000, autoenc_decay)
dec_factor = 1.0 - exp_glob # * self.do_training
dec_factor = tf.cond(tf.less(self.global_step, 10500),
lambda: tf.constant(0.05), lambda: dec_factor)
else:
dec_factor = 1.0
cur = tf.cond(tf.less(tf.random_uniform([]), dec_factor),
lambda: quant_step, lambda: step)
else:
cur = step
if dropout > 0.0001:
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
# Do nconvs-many CGRU steps.
if do_jit and tf.get_variable_scope().reuse:
with jit_scope():
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "ecgru_%d" % layer, do_layer_norm)
else:
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "ecgru_%d" % layer, do_layer_norm)
return cur
zero_tgt = tf.zeros([batch_size, nmaps, 1])
zero_tgt.set_shape([None, nmaps, 1])
def dec_substep(step, decided):
"""Decoder sub-step."""
cur = step
if dropout > 0.0001:
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
# Do nconvs-many CGRU steps.
if do_jit and tf.get_variable_scope().reuse:
with jit_scope():
for layer in xrange(nconvs):
cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "dcgru_%d" % layer, do_layer_norm)
else:
for layer in xrange(nconvs):
cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "dcgru_%d" % layer, do_layer_norm)
return cur
# pylint: enable=cell-var-from-loop
def dec_step(step, it, it_int, decided, output_ta, tgts,
mloss, nupd_in, out_idx, beam_cost):
"""Decoder step."""
nupd, mem_loss = 0, 0.0
if mem_size > 0:
it_incr = tf.minimum(it+1, length - 1)
mem, mem_loss, nupd = memory_run(
step, nmaps, mem_size, batch_size, noclass, self.global_step,
self.do_training, self.update_mem, 10, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it_incr)
step = dec_substep(step, decided)
output_l = tf.expand_dims(tf.expand_dims(step[:, it, 0, :], 1), 1)
# Calculate argmax output.
output = tf.reshape(output_l, [-1, nmaps])
# pylint: disable=cell-var-from-loop
output = tf.matmul(output, output_w)
if beam_size > 1:
beam_cost, output, out, reordered = reorder_beam(
beam_size, batch_size, beam_cost, output, it_int == 0,
[output_l, out_idx, step, decided])
[output_l, out_idx, step, decided] = reordered
else:
# Scheduled sampling.
out = tf.multinomial(tf.stop_gradient(output), 1)
out = tf.to_int32(tf.squeeze(out, [1]))
out_write = output_ta.write(it, output_l[:batch_size, :, :, :])
output = tf.gather(target_emb_weights, out)
output = tf.reshape(output, [-1, 1, nmaps])
output = tf.concat(axis=1, values=[output] * height)
tgt = tgts[it, :, :, :]
selected = tf.cond(tf.less(tf.random_uniform([]), self.sampling),
lambda: output, lambda: tgt)
# pylint: enable=cell-var-from-loop
dec_write = place_at14(decided, tf.expand_dims(selected, 1), it)
out_idx = place_at13(
out_idx, tf.reshape(out, [beam_size * batch_size, 1, 1]), it)
if mem_size > 0:
mem = tf.concat(axis=2, values=[mem] * height)
dec_write = place_at14(dec_write, mem, it_incr)
return (step, dec_write, out_write, mloss + mem_loss, nupd_in + nupd,
out_idx, beam_cost)
# Main model construction.
gpu_outputs = []
gpu_losses = []
gpu_grad_norms = []
grads_list = []
gpu_out_idx = []
self.after_enc_step = []
for gpu in xrange(num_gpus): # Multi-GPU towers, average gradients later.
length = self.length_tensor
length_float = tf.cast(length, tf.float32)
if gpu > 0:
tf.get_variable_scope().reuse_variables()
gpu_outputs.append([])
gpu_losses.append([])
gpu_grad_norms.append([])
with tf.name_scope("gpu%d" % gpu), tf.device("/gpu:%d" % gpu):
# Main graph creation loop.
data.print_out("Creating model.")
start_time = time.time()
# Embed inputs and calculate mask.
with tf.device("/cpu:0"):
tgt_shape = tf.shape(tf.squeeze(gpu_target[gpu], [1]))
weights = tf.where(tf.squeeze(gpu_target[gpu], [1]) > 0,
tf.ones(tgt_shape), tf.zeros(tgt_shape))
# Embed inputs and targets.
with tf.control_dependencies([e0]):
start = tf.gather(emb_weights, gpu_input[gpu]) # b x h x l x nmaps
gpu_targets_tn = gpu_target[gpu] # b x 1 x len
if beam_size > 0:
embedded_targets_tn = tf.gather(target_emb_weights,
gpu_targets_tn)
embedded_targets_tn = tf.transpose(
embedded_targets_tn, [2, 0, 1, 3]) # len x b x 1 x nmaps
embedded_targets_tn = tf.concat(axis=2, values=[embedded_targets_tn] * height)
# First image comes from start by applying convolution and adding 0s.
start = tf.transpose(start, [0, 2, 1, 3]) # Now b x len x h x vec_s
first = conv_linear(start, 1, 1, vec_size, nmaps, 1, True, 0.0, "input")
first = layer_norm(first, nmaps, "input")
# Computation steps.
keep_prob = dropout * 3.0 / tf.sqrt(length_float)
keep_prob = 1.0 - self.do_training * keep_prob
act_noise_scale = act_noise * self.do_training
# Start with a convolutional gate merging previous step.
step = conv_gru([gpu_prev_step[gpu]], first,
kw, kh, nmaps, 1, cutoff, "first", do_layer_norm)
# This is just for running a baseline RNN seq2seq model.
if do_rnn:
self.after_enc_step.append(step) # Not meaningful here, but needed.
def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(height * nmaps)
cell = tf.contrib.rnn.MultiRNNCell(
[lstm_cell() for _ in range(nconvs)])
with tf.variable_scope("encoder"):
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
cell, tf.reshape(step, [batch_size, length, height * nmaps]),
dtype=tf.float32, time_major=False)
# Attention.
attn = tf.layers.dense(
encoder_outputs, height * nmaps, name="attn1")
# pylint: disable=cell-var-from-loop
@function.Defun(noinline=True)
def attention_query(query, attn_v):
vecs = tf.tanh(attn + tf.expand_dims(query, 1))
mask = tf.reduce_sum(vecs * tf.reshape(attn_v, [1, 1, -1]), 2)
mask = tf.nn.softmax(mask)
return tf.reduce_sum(encoder_outputs * tf.expand_dims(mask, 2), 1)
with tf.variable_scope("decoder"):
def decoder_loop_fn(state__prev_cell_out__unused, cell_inp__cur_tgt):
"""Decoder loop function."""
state, prev_cell_out, _ = state__prev_cell_out__unused
cell_inp, cur_tgt = cell_inp__cur_tgt
attn_q = tf.layers.dense(prev_cell_out, height * nmaps,
name="attn_query")
attn_res = attention_query(attn_q, tf.get_variable(
"attn_v", [height * nmaps],
initializer=tf.random_uniform_initializer(-0.1, 0.1)))
concatenated = tf.reshape(tf.concat(axis=1, values=[cell_inp, attn_res]),
[batch_size, 2 * height * nmaps])
cell_inp = tf.layers.dense(
concatenated, height * nmaps, name="attn_merge")
output, new_state = cell(cell_inp, state)
mem_loss = 0.0
if mem_size > 0:
res, mask, mem_loss = memory_call(
output, cur_tgt, height * nmaps, mem_size, noclass,
num_gpus, self.update_mem)
res = tf.gather(target_emb_weights, res)
res *= tf.expand_dims(mask[:, 0], 1)
output = tf.layers.dense(
tf.concat(axis=1, values=[output, res]), height * nmaps, name="rnnmem")
return new_state, output, mem_loss
# pylint: enable=cell-var-from-loop
gpu_targets = tf.squeeze(gpu_target[gpu], [1]) # b x len
gpu_tgt_trans = tf.transpose(gpu_targets, [1, 0])
dec_zero = tf.zeros([batch_size, 1], dtype=tf.int32)
dec_inp = tf.concat(axis=1, values=[dec_zero, gpu_targets])
dec_inp = dec_inp[:, :length]
embedded_dec_inp = tf.gather(target_emb_weights, dec_inp)
embedded_dec_inp_proj = tf.layers.dense(
embedded_dec_inp, height * nmaps, name="dec_proj")
embedded_dec_inp_proj = tf.transpose(embedded_dec_inp_proj,
[1, 0, 2])
init_vals = (encoder_state,
tf.zeros([batch_size, height * nmaps]), 0.0)
_, dec_outputs, mem_losses = tf.scan(
decoder_loop_fn, (embedded_dec_inp_proj, gpu_tgt_trans),
initializer=init_vals)
mem_loss = tf.reduce_mean(mem_losses)
outputs = tf.layers.dense(dec_outputs, nmaps, name="out_proj")
# Final convolution to get logits, list outputs.
outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
outputs = tf.reshape(outputs, [length, batch_size, noclass])
gpu_out_idx.append(tf.argmax(outputs, 2))
else: # Here we go with the Neural GPU.
# Encoder.
enc_length = length
step = enc_step(step) # First step hard-coded.
# pylint: disable=cell-var-from-loop
i = tf.constant(1)
c = lambda i, _s: tf.less(i, enc_length)
def enc_step_lambda(i, step):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
new_step = enc_step(step)
return (i + 1, new_step)
_, step = tf.while_loop(
c, enc_step_lambda, [i, step],
parallel_iterations=1, swap_memory=True)
# pylint: enable=cell-var-from-loop
self.after_enc_step.append(step)
# Decoder.
if beam_size > 0:
output_ta = tf.TensorArray(
dtype=tf.float32, size=length, dynamic_size=False,
infer_shape=False, name="outputs")
out_idx = tf.zeros([beam_size * batch_size, length, 1],
dtype=tf.int32)
decided_t = tf.zeros([beam_size * batch_size, length,
height, vec_size])
# Prepare for beam search.
tgts = tf.concat(axis=1, values=[embedded_targets_tn] * beam_size)
beam_cost = tf.zeros([batch_size, beam_size])
step = tf.concat(axis=0, values=[step] * beam_size)
# First step hard-coded.
step, decided_t, output_ta, mem_loss, nupd, oi, bc = dec_step(
step, 0, 0, decided_t, output_ta, tgts, 0.0, 0, out_idx,
beam_cost)
tf.get_variable_scope().reuse_variables()
# pylint: disable=cell-var-from-loop
def step_lambda(i, step, dec_t, out_ta, ml, nu, oi, bc):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
s, d, t, nml, nu, oi, bc = dec_step(
step, i, 1, dec_t, out_ta, tgts, ml, nu, oi, bc)
return (i + 1, s, d, t, nml, nu, oi, bc)
i = tf.constant(1)
c = lambda i, _s, _d, _o, _ml, _nu, _oi, _bc: tf.less(i, length)
_, step, _, output_ta, mem_loss, nupd, out_idx, _ = tf.while_loop(
c, step_lambda,
[i, step, decided_t, output_ta, mem_loss, nupd, oi, bc],
parallel_iterations=1, swap_memory=True)
# pylint: enable=cell-var-from-loop
gpu_out_idx.append(tf.squeeze(out_idx, [2]))
outputs = output_ta.stack()
outputs = tf.squeeze(outputs, [2, 3]) # Now l x b x nmaps
else:
# If beam_size is 0 or less, we don't have a decoder.
mem_loss = 0.0
outputs = tf.transpose(step[:, :, 1, :], [1, 0, 2])
gpu_out_idx.append(tf.argmax(outputs, 2))
# Final convolution to get logits, list outputs.
outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
outputs = tf.reshape(outputs, [length, batch_size, noclass])
gpu_outputs[gpu] = tf.nn.softmax(outputs)
# Calculate cross-entropy loss and normalize it.
targets_soft = make_dense(tf.squeeze(gpu_target[gpu], [1]),
noclass, 0.1)
targets_soft = tf.reshape(targets_soft, [-1, noclass])
targets_hard = make_dense(tf.squeeze(gpu_target[gpu], [1]),
noclass, 0.0)
targets_hard = tf.reshape(targets_hard, [-1, noclass])
output = tf.transpose(outputs, [1, 0, 2])
xent_soft = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
logits=tf.reshape(output, [-1, noclass]), labels=targets_soft),
[batch_size, length])
xent_hard = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
logits=tf.reshape(output, [-1, noclass]), labels=targets_hard),
[batch_size, length])
low, high = 0.1 / float(noclass - 1), 0.9
const = high * tf.log(high) + float(noclass - 1) * low * tf.log(low)
weight_sum = tf.reduce_sum(weights) + 1e-20
true_perp = tf.reduce_sum(xent_hard * weights) / weight_sum
soft_loss = tf.reduce_sum(xent_soft * weights) / weight_sum
perp_loss = soft_loss + const
# Final loss: cross-entropy + shared parameter relaxation part + extra.
mem_loss = 0.5 * tf.reduce_mean(mem_loss) / length_float
total_loss = perp_loss + mem_loss
gpu_losses[gpu].append(true_perp)
# Gradients.
if backward:
data.print_out("Creating backward pass for the model.")
grads = tf.gradients(
total_loss, tf.trainable_variables(),
colocate_gradients_with_ops=True)
for g_i, g in enumerate(grads):
if isinstance(g, tf.IndexedSlices):
grads[g_i] = tf.convert_to_tensor(g)
grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
gpu_grad_norms[gpu].append(norm)
for g in grads:
if grad_noise_scale > 0.001:
g += tf.truncated_normal(tf.shape(g)) * self.noise_param
grads_list.append(grads)
else:
gpu_grad_norms[gpu].append(0.0)
data.print_out("Created model for gpu %d in %.2f s."
% (gpu, time.time() - start_time))
self.updates = []
self.after_enc_step = tf.concat(axis=0, values=self.after_enc_step) # Concat GPUs.
if backward:
tf.get_variable_scope()._reuse = False
tf.get_variable_scope().set_caching_device(None)
grads = [gpu_avg([grads_list[g][i] for g in xrange(num_gpus)])
for i in xrange(len(grads_list[0]))]
update = adam_update(grads)
self.updates.append(update)
else:
self.updates.append(tf.no_op())
self.losses = [gpu_avg([gpu_losses[g][i] for g in xrange(num_gpus)])
for i in xrange(len(gpu_losses[0]))]
self.out_idx = tf.concat(axis=0, values=gpu_out_idx)
self.grad_norms = [gpu_avg([gpu_grad_norms[g][i] for g in xrange(num_gpus)])
for i in xrange(len(gpu_grad_norms[0]))]
self.outputs = [tf.concat(axis=1, values=[gpu_outputs[g] for g in xrange(num_gpus)])]
self.quantize_op = quantize_weights_op(512, 8)
if backward:
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
def step(self, sess, inp, target, do_backward_in, noise_param=None,
beam_size=2, eos_id=2, eos_cost=0.0, update_mem=None, state=None):
"""Run a step of the network."""
batch_size, height, length = inp.shape[0], inp.shape[1], inp.shape[2]
do_backward = do_backward_in
train_mode = True
if do_backward_in is None:
do_backward = False
train_mode = False
if update_mem is None:
update_mem = do_backward
feed_in = {}
# print " feeding sequences of length %d" % length
if state is None:
state = np.zeros([batch_size, length, height, self.nmaps])
feed_in[self.prev_step.name] = state
feed_in[self.length_tensor.name] = length
feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
feed_in[self.update_mem.name] = 1 if update_mem else 0
if do_backward_in is False:
feed_in[self.sampling.name] = 0.0
index = 0 # We're dynamic now.
feed_out = []
if do_backward:
feed_out.append(self.updates[index])
feed_out.append(self.grad_norms[index])
if train_mode:
feed_out.append(self.losses[index])
feed_in[self.input.name] = inp
feed_in[self.target.name] = target
feed_out.append(self.outputs[index])
if train_mode:
# Make a full-sequence training step with one call to session.run.
res = sess.run([self.after_enc_step] + feed_out, feed_in)
after_enc_state, res = res[0], res[1:]
else:
# Make a full-sequence decoding step with one call to session.run.
feed_in[self.sampling.name] = 1.1 # Sample every time.
res = sess.run([self.after_enc_step, self.out_idx] + feed_out, feed_in)
after_enc_state, out_idx = res[0], res[1]
res = [res[2][l] for l in xrange(length)]
outputs = [out_idx[:, i] for i in xrange(length)]
cost = [0.0 for _ in xrange(beam_size * batch_size)]
seen_eos = [0 for _ in xrange(beam_size * batch_size)]
for idx, logit in enumerate(res):
best = outputs[idx]
for b in xrange(batch_size):
if seen_eos[b] > 1:
cost[b] -= eos_cost
else:
cost[b] += np.log(logit[b][best[b]])
if best[b] in [eos_id]:
seen_eos[b] += 1
res = [[-c for c in cost]] + outputs
# Collect and output results.
offset = 0
norm = None
if do_backward:
offset = 2
norm = res[1]
if train_mode:
outputs = res[offset + 1]
outputs = [outputs[l] for l in xrange(length)]
return res[offset], outputs, norm, after_enc_state
|