Spaces:
Running
Running
File size: 45,184 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 |
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Neural GPU."""
from __future__ import print_function
import math
import os
import random
import sys
import threading
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
import program_utils
import data_utils as data
import neural_gpu as ngpu
import wmt_utils as wmt
tf.app.flags.DEFINE_float("lr", 0.1, "Learning rate.")
tf.app.flags.DEFINE_float("init_weight", 0.8, "Initial weights deviation.")
tf.app.flags.DEFINE_float("max_grad_norm", 4.0, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("cutoff", 1.2, "Cutoff at the gates.")
tf.app.flags.DEFINE_float("curriculum_ppx", 9.9, "Move curriculum if ppl < X.")
tf.app.flags.DEFINE_float("curriculum_seq", 0.3, "Move curriculum if seq < X.")
tf.app.flags.DEFINE_float("dropout", 0.1, "Dropout that much.")
tf.app.flags.DEFINE_float("grad_noise_scale", 0.0, "Gradient noise scale.")
tf.app.flags.DEFINE_float("max_sampling_rate", 0.1, "Maximal sampling rate.")
tf.app.flags.DEFINE_float("length_norm", 0.0, "Length normalization.")
tf.app.flags.DEFINE_float("train_beam_freq", 0.0, "Beam-based training.")
tf.app.flags.DEFINE_float("train_beam_anneal", 20000, "How many steps anneal.")
tf.app.flags.DEFINE_integer("eval_beam_steps", 4, "How many beam steps eval.")
tf.app.flags.DEFINE_integer("batch_size", 32, "Batch size.")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 100, "Steps per epoch.")
tf.app.flags.DEFINE_integer("nmaps", 64, "Number of floats in each cell.")
tf.app.flags.DEFINE_integer("vec_size", 64, "Size of word vectors.")
tf.app.flags.DEFINE_integer("train_data_size", 1000, "Training examples/len.")
tf.app.flags.DEFINE_integer("max_length", 40, "Maximum length.")
tf.app.flags.DEFINE_integer("random_seed", 125459, "Random seed.")
tf.app.flags.DEFINE_integer("nconvs", 2, "How many convolutions / 1 step.")
tf.app.flags.DEFINE_integer("kw", 3, "Kernel width.")
tf.app.flags.DEFINE_integer("kh", 3, "Kernel height.")
tf.app.flags.DEFINE_integer("height", 4, "Height.")
tf.app.flags.DEFINE_integer("mem_size", -1, "Memory size (sqrt)")
tf.app.flags.DEFINE_integer("soft_mem_size", 1024, "Softmax memory this size.")
tf.app.flags.DEFINE_integer("num_gpus", 1, "Number of GPUs to use.")
tf.app.flags.DEFINE_integer("num_replicas", 1, "Number of replicas in use.")
tf.app.flags.DEFINE_integer("beam_size", 1, "Beam size during decoding. "
"If 0, no decoder, the non-extended Neural GPU.")
tf.app.flags.DEFINE_integer("max_target_vocab", 0,
"Maximal size of target vocabulary.")
tf.app.flags.DEFINE_integer("decode_offset", 0, "Offset for decoding.")
tf.app.flags.DEFINE_integer("task", -1, "Task id when running on borg.")
tf.app.flags.DEFINE_integer("nprint", 0, "How many test examples to print out.")
tf.app.flags.DEFINE_integer("eval_bin_print", 3, "How many bins step in eval.")
tf.app.flags.DEFINE_integer("mode", 0, "Mode: 0-train other-decode.")
tf.app.flags.DEFINE_bool("atrous", False, "Whether to use atrous convs.")
tf.app.flags.DEFINE_bool("layer_norm", False, "Do layer normalization.")
tf.app.flags.DEFINE_bool("quantize", False, "Whether to quantize variables.")
tf.app.flags.DEFINE_bool("do_train", True, "If false, only update memory.")
tf.app.flags.DEFINE_bool("rnn_baseline", False, "If true build an RNN instead.")
tf.app.flags.DEFINE_bool("simple_tokenizer", False,
"If true, tokenize on spaces only, digits are 0.")
tf.app.flags.DEFINE_bool("normalize_digits", True,
"Whether to normalize digits with simple tokenizer.")
tf.app.flags.DEFINE_integer("vocab_size", 16, "Joint vocabulary size.")
tf.app.flags.DEFINE_string("data_dir", "/tmp", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "/tmp/", "Directory to store models.")
tf.app.flags.DEFINE_string("test_file_prefix", "", "Files to test (.en,.fr).")
tf.app.flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_string("word_vector_file_en", "",
"Optional file with word vectors to start training.")
tf.app.flags.DEFINE_string("word_vector_file_fr", "",
"Optional file with word vectors to start training.")
tf.app.flags.DEFINE_string("problem", "wmt", "What problem are we solving?.")
tf.app.flags.DEFINE_integer("ps_tasks", 0, "Number of ps tasks used.")
tf.app.flags.DEFINE_string("master", "", "Name of the TensorFlow master.")
FLAGS = tf.app.flags.FLAGS
EXTRA_EVAL = 10
EVAL_LEN_INCR = 8
MAXLEN_F = 2.0
def zero_split(tok_list, append=None):
"""Split tok_list (list of ints) on 0s, append int to all parts if given."""
res, cur, l = [], [], 0
for tok in tok_list:
if tok == 0:
if append is not None:
cur.append(append)
res.append(cur)
l = max(l, len(cur))
cur = []
else:
cur.append(tok)
if append is not None:
cur.append(append)
res.append(cur)
l = max(l, len(cur))
return res, l
def read_data(source_path, target_path, buckets, max_size=None, print_out=True):
"""Read data from source and target files and put into buckets.
Args:
source_path: path to the files with token-ids for the source language.
target_path: path to the file with token-ids for the target language;
it must be aligned with the source file: n-th line contains the desired
output for n-th line from the source_path.
buckets: the buckets to use.
max_size: maximum number of lines to read, all other will be ignored;
if 0 or None, data files will be read completely (no limit).
If set to 1, no data will be returned (empty lists of the right form).
print_out: whether to print out status or not.
Returns:
data_set: a list of length len(_buckets); data_set[n] contains a list of
(source, target) pairs read from the provided data files that fit
into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and
len(target) < _buckets[n][1]; source and target are lists of token-ids.
"""
data_set = [[] for _ in buckets]
counter = 0
if max_size != 1:
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0 and print_out:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
source_ids, source_len = zero_split(source_ids)
target_ids, target_len = zero_split(target_ids, append=wmt.EOS_ID)
for bucket_id, size in enumerate(buckets):
if source_len <= size and target_len <= size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = source_file.readline(), target_file.readline()
return data_set
global_train_set = {"wmt": []}
train_buckets_scale = {"wmt": []}
def calculate_buckets_scale(data_set, buckets, problem):
"""Calculate buckets scales for the given data set."""
train_bucket_sizes = [len(data_set[b]) for b in xrange(len(buckets))]
train_total_size = max(1, float(sum(train_bucket_sizes)))
# A bucket scale is a list of increasing numbers from 0 to 1 that we'll use
# to select a bucket. Length of [scale[i], scale[i+1]] is proportional to
# the size if i-th training bucket, as used later.
if problem not in train_buckets_scale:
train_buckets_scale[problem] = []
train_buckets_scale[problem].append(
[sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))])
return train_total_size
def read_data_into_global(source_path, target_path, buckets,
max_size=None, print_out=True):
"""Read data into the global variables (can be in a separate thread)."""
# pylint: disable=global-variable-not-assigned
global global_train_set, train_buckets_scale
# pylint: enable=global-variable-not-assigned
data_set = read_data(source_path, target_path, buckets, max_size, print_out)
global_train_set["wmt"].append(data_set)
train_total_size = calculate_buckets_scale(data_set, buckets, "wmt")
if print_out:
print(" Finished global data reading (%d)." % train_total_size)
def initialize(sess=None):
"""Initialize data and model."""
global MAXLEN_F
# Create training directory if it does not exist.
if not tf.gfile.IsDirectory(FLAGS.train_dir):
data.print_out("Creating training directory %s." % FLAGS.train_dir)
tf.gfile.MkDir(FLAGS.train_dir)
decode_suffix = "beam%dln%d" % (FLAGS.beam_size,
int(100 * FLAGS.length_norm))
if FLAGS.mode == 0:
decode_suffix = ""
if FLAGS.task >= 0:
data.log_filename = os.path.join(FLAGS.train_dir,
"log%d%s" % (FLAGS.task, decode_suffix))
else:
data.log_filename = os.path.join(FLAGS.train_dir, "neural_gpu/log")
# Set random seed.
if FLAGS.random_seed > 0:
seed = FLAGS.random_seed + max(0, FLAGS.task)
tf.set_random_seed(seed)
random.seed(seed)
np.random.seed(seed)
# Check data sizes.
assert data.bins
max_length = min(FLAGS.max_length, data.bins[-1])
while len(data.bins) > 1 and data.bins[-2] >= max_length + EXTRA_EVAL:
data.bins = data.bins[:-1]
if sess is None and FLAGS.task == 0 and FLAGS.num_replicas > 1:
if max_length > 60:
max_length = max_length * 1 / 2 # Save memory on chief.
min_length = min(14, max_length - 3) if FLAGS.problem == "wmt" else 3
for p in FLAGS.problem.split("-"):
if p in ["progeval", "progsynth"]:
min_length = max(26, min_length)
assert max_length + 1 > min_length
while len(data.bins) > 1 and data.bins[-2] >= max_length + EXTRA_EVAL:
data.bins = data.bins[:-1]
# Create checkpoint directory if it does not exist.
if FLAGS.mode == 0 or FLAGS.task < 0:
checkpoint_dir = os.path.join(FLAGS.train_dir, "neural_gpu%s"
% ("" if FLAGS.task < 0 else str(FLAGS.task)))
else:
checkpoint_dir = FLAGS.train_dir
if not tf.gfile.IsDirectory(checkpoint_dir):
data.print_out("Creating checkpoint directory %s." % checkpoint_dir)
tf.gfile.MkDir(checkpoint_dir)
# Prepare data.
if FLAGS.problem == "wmt":
# Prepare WMT data.
data.print_out("Preparing WMT data in %s" % FLAGS.data_dir)
if FLAGS.simple_tokenizer:
MAXLEN_F = 3.5
(en_train, fr_train, en_dev, fr_dev,
en_path, fr_path) = wmt.prepare_wmt_data(
FLAGS.data_dir, FLAGS.vocab_size,
tokenizer=wmt.space_tokenizer,
normalize_digits=FLAGS.normalize_digits)
else:
(en_train, fr_train, en_dev, fr_dev,
en_path, fr_path) = wmt.prepare_wmt_data(
FLAGS.data_dir, FLAGS.vocab_size)
# Read data into buckets and compute their sizes.
fr_vocab, rev_fr_vocab = wmt.initialize_vocabulary(fr_path)
data.vocab = fr_vocab
data.rev_vocab = rev_fr_vocab
data.print_out("Reading development and training data (limit: %d)."
% FLAGS.max_train_data_size)
dev_set = {}
dev_set["wmt"] = read_data(en_dev, fr_dev, data.bins)
def data_read(size, print_out):
read_data_into_global(en_train, fr_train, data.bins, size, print_out)
data_read(50000, False)
read_thread_small = threading.Thread(
name="reading-data-small", target=lambda: data_read(900000, False))
read_thread_small.start()
read_thread_full = threading.Thread(
name="reading-data-full",
target=lambda: data_read(FLAGS.max_train_data_size, True))
read_thread_full.start()
data.print_out("Data reading set up.")
else:
# Prepare algorithmic data.
en_path, fr_path = None, None
tasks = FLAGS.problem.split("-")
data_size = FLAGS.train_data_size
for t in tasks:
data.print_out("Generating data for %s." % t)
if t in ["progeval", "progsynth"]:
data.init_data(t, data.bins[-1], 20 * data_size, FLAGS.vocab_size)
if len(program_utils.prog_vocab) > FLAGS.vocab_size - 2:
raise ValueError("Increase vocab_size to %d for prog-tasks."
% (len(program_utils.prog_vocab) + 2))
data.rev_vocab = program_utils.prog_vocab
data.vocab = program_utils.prog_rev_vocab
else:
for l in xrange(max_length + EXTRA_EVAL - 1):
data.init_data(t, l, data_size, FLAGS.vocab_size)
data.init_data(t, data.bins[-2], data_size, FLAGS.vocab_size)
data.init_data(t, data.bins[-1], data_size, FLAGS.vocab_size)
if t not in global_train_set:
global_train_set[t] = []
global_train_set[t].append(data.train_set[t])
calculate_buckets_scale(data.train_set[t], data.bins, t)
dev_set = data.test_set
# Grid-search parameters.
lr = FLAGS.lr
init_weight = FLAGS.init_weight
max_grad_norm = FLAGS.max_grad_norm
if sess is not None and FLAGS.task > -1:
def job_id_factor(step):
"""If jobid / step mod 3 is 0, 1, 2: say 0, 1, -1."""
return ((((FLAGS.task / step) % 3) + 1) % 3) - 1
lr *= math.pow(2, job_id_factor(1))
init_weight *= math.pow(1.5, job_id_factor(3))
max_grad_norm *= math.pow(2, job_id_factor(9))
# Print out parameters.
curriculum = FLAGS.curriculum_seq
msg1 = ("layers %d kw %d h %d kh %d batch %d noise %.2f"
% (FLAGS.nconvs, FLAGS.kw, FLAGS.height, FLAGS.kh,
FLAGS.batch_size, FLAGS.grad_noise_scale))
msg2 = ("cut %.2f lr %.3f iw %.2f cr %.2f nm %d d%.4f gn %.2f %s"
% (FLAGS.cutoff, lr, init_weight, curriculum, FLAGS.nmaps,
FLAGS.dropout, max_grad_norm, msg1))
data.print_out(msg2)
# Create model and initialize it.
tf.get_variable_scope().set_initializer(
tf.orthogonal_initializer(gain=1.8 * init_weight))
max_sampling_rate = FLAGS.max_sampling_rate if FLAGS.mode == 0 else 0.0
o = FLAGS.vocab_size if FLAGS.max_target_vocab < 1 else FLAGS.max_target_vocab
ngpu.CHOOSE_K = FLAGS.soft_mem_size
do_beam_model = FLAGS.train_beam_freq > 0.0001 and FLAGS.beam_size > 1
beam_size = FLAGS.beam_size if FLAGS.mode > 0 and not do_beam_model else 1
beam_size = min(beam_size, FLAGS.beam_size)
beam_model = None
def make_ngpu(cur_beam_size, back):
return ngpu.NeuralGPU(
FLAGS.nmaps, FLAGS.vec_size, FLAGS.vocab_size, o,
FLAGS.dropout, max_grad_norm, FLAGS.cutoff, FLAGS.nconvs,
FLAGS.kw, FLAGS.kh, FLAGS.height, FLAGS.mem_size,
lr / math.sqrt(FLAGS.num_replicas), min_length + 3, FLAGS.num_gpus,
FLAGS.num_replicas, FLAGS.grad_noise_scale, max_sampling_rate,
atrous=FLAGS.atrous, do_rnn=FLAGS.rnn_baseline,
do_layer_norm=FLAGS.layer_norm, beam_size=cur_beam_size, backward=back)
if sess is None:
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
model = make_ngpu(beam_size, True)
if do_beam_model:
tf.get_variable_scope().reuse_variables()
beam_model = make_ngpu(FLAGS.beam_size, False)
else:
model = make_ngpu(beam_size, True)
if do_beam_model:
tf.get_variable_scope().reuse_variables()
beam_model = make_ngpu(FLAGS.beam_size, False)
sv = None
if sess is None:
# The supervisor configuration has a few overriden options.
sv = tf.train.Supervisor(logdir=checkpoint_dir,
is_chief=(FLAGS.task < 1),
saver=model.saver,
summary_op=None,
save_summaries_secs=60,
save_model_secs=15 * 60,
global_step=model.global_step)
config = tf.ConfigProto(allow_soft_placement=True)
sess = sv.PrepareSession(FLAGS.master, config=config)
data.print_out("Created model. Checkpoint dir %s" % checkpoint_dir)
# Load model from parameters if a checkpoint exists.
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path + ".index"):
data.print_out("Reading model parameters from %s"
% ckpt.model_checkpoint_path)
model.saver.restore(sess, ckpt.model_checkpoint_path)
elif sv is None:
sess.run(tf.global_variables_initializer())
data.print_out("Initialized variables (no supervisor mode).")
elif FLAGS.task < 1 and FLAGS.mem_size > 0:
# sess.run(model.mem_norm_op)
data.print_out("Created new model and normalized mem (on chief).")
# Return the model and needed variables.
return (model, beam_model, min_length, max_length, checkpoint_dir,
(global_train_set, dev_set, en_path, fr_path), sv, sess)
def m_step(model, beam_model, sess, batch_size, inp, target, bucket, nsteps, p):
"""Evaluation multi-step for program synthesis."""
state, scores, hist = None, [[-11.0 for _ in xrange(batch_size)]], []
for _ in xrange(nsteps):
# Get the best beam (no training, just forward model).
new_target, new_first, new_inp, new_scores = get_best_beam(
beam_model, sess, inp, target,
batch_size, FLAGS.beam_size, bucket, hist, p, test_mode=True)
hist.append(new_first)
_, _, _, state = model.step(sess, inp, new_target, False, state=state)
inp = new_inp
scores.append([max(scores[-1][i], new_scores[i])
for i in xrange(batch_size)])
# The final step with the true target.
loss, res, _, _ = model.step(sess, inp, target, False, state=state)
return loss, res, new_target, scores[1:]
def single_test(bin_id, model, sess, nprint, batch_size, dev, p, print_out=True,
offset=None, beam_model=None):
"""Test model on test data of length l using the given session."""
if not dev[p][bin_id]:
data.print_out(" bin %d (%d)\t%s\tppl NA errors NA seq-errors NA"
% (bin_id, data.bins[bin_id], p))
return 1.0, 1.0, 0.0
inpt, target = data.get_batch(
bin_id, batch_size, dev[p], FLAGS.height, offset)
if FLAGS.beam_size > 1 and beam_model:
loss, res, new_tgt, scores = m_step(
model, beam_model, sess, batch_size, inpt, target, bin_id,
FLAGS.eval_beam_steps, p)
score_avgs = [sum(s) / float(len(s)) for s in scores]
score_maxs = [max(s) for s in scores]
score_str = ["(%.2f, %.2f)" % (score_avgs[i], score_maxs[i])
for i in xrange(FLAGS.eval_beam_steps)]
data.print_out(" == scores (avg, max): %s" % "; ".join(score_str))
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size,
nprint, new_tgt, scores[-1])
else:
loss, res, _, _ = model.step(sess, inpt, target, False)
errors, total, seq_err = data.accuracy(inpt, res, target, batch_size,
nprint)
seq_err = float(seq_err) / batch_size
if total > 0:
errors = float(errors) / total
if print_out:
data.print_out(" bin %d (%d)\t%s\tppl %.2f errors %.2f seq-errors %.2f"
% (bin_id, data.bins[bin_id], p, data.safe_exp(loss),
100 * errors, 100 * seq_err))
return (errors, seq_err, loss)
def assign_vectors(word_vector_file, embedding_key, vocab_path, sess):
"""Assign the embedding_key variable from the given word vectors file."""
# For words in the word vector file, set their embedding at start.
if not tf.gfile.Exists(word_vector_file):
data.print_out("Word vector file does not exist: %s" % word_vector_file)
sys.exit(1)
vocab, _ = wmt.initialize_vocabulary(vocab_path)
vectors_variable = [v for v in tf.trainable_variables()
if embedding_key == v.name]
if len(vectors_variable) != 1:
data.print_out("Word vector variable not found or too many.")
sys.exit(1)
vectors_variable = vectors_variable[0]
vectors = vectors_variable.eval()
data.print_out("Pre-setting word vectors from %s" % word_vector_file)
with tf.gfile.GFile(word_vector_file, mode="r") as f:
# Lines have format: dog 0.045123 -0.61323 0.413667 ...
for line in f:
line_parts = line.split()
# The first part is the word.
word = line_parts[0]
if word in vocab:
# Remaining parts are components of the vector.
word_vector = np.array(map(float, line_parts[1:]))
if len(word_vector) != FLAGS.vec_size:
data.print_out("Warn: Word '%s', Expecting vector size %d, "
"found %d" % (word, FLAGS.vec_size,
len(word_vector)))
else:
vectors[vocab[word]] = word_vector
# Assign the modified vectors to the vectors_variable in the graph.
sess.run([vectors_variable.initializer],
{vectors_variable.initializer.inputs[1]: vectors})
def print_vectors(embedding_key, vocab_path, word_vector_file):
"""Print vectors from the given variable."""
_, rev_vocab = wmt.initialize_vocabulary(vocab_path)
vectors_variable = [v for v in tf.trainable_variables()
if embedding_key == v.name]
if len(vectors_variable) != 1:
data.print_out("Word vector variable not found or too many.")
sys.exit(1)
vectors_variable = vectors_variable[0]
vectors = vectors_variable.eval()
l, s = vectors.shape[0], vectors.shape[1]
data.print_out("Printing %d word vectors from %s to %s."
% (l, embedding_key, word_vector_file))
with tf.gfile.GFile(word_vector_file, mode="w") as f:
# Lines have format: dog 0.045123 -0.61323 0.413667 ...
for i in xrange(l):
f.write(rev_vocab[i])
for j in xrange(s):
f.write(" %.8f" % vectors[i][j])
f.write("\n")
def get_bucket_id(train_buckets_scale_c, max_cur_length, data_set):
"""Get a random bucket id."""
# Choose a bucket according to data distribution. Pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale_c))
if train_buckets_scale_c[i] > random_number_01])
while bucket_id > 0 and not data_set[bucket_id]:
bucket_id -= 1
for _ in xrange(10 if np.random.random_sample() < 0.9 else 1):
if data.bins[bucket_id] > max_cur_length:
random_number_01 = min(random_number_01, np.random.random_sample())
bucket_id = min([i for i in xrange(len(train_buckets_scale_c))
if train_buckets_scale_c[i] > random_number_01])
while bucket_id > 0 and not data_set[bucket_id]:
bucket_id -= 1
return bucket_id
def score_beams(beams, target, inp, history, p,
print_out=False, test_mode=False):
"""Score beams."""
if p == "progsynth":
return score_beams_prog(beams, target, inp, history, print_out, test_mode)
elif test_mode:
return beams[0], 10.0 if str(beams[0][:len(target)]) == str(target) else 0.0
else:
history_s = [str(h) for h in history]
best, best_score, tgt, eos_id = None, -1000.0, target, None
if p == "wmt":
eos_id = wmt.EOS_ID
if eos_id and eos_id in target:
tgt = target[:target.index(eos_id)]
for beam in beams:
if eos_id and eos_id in beam:
beam = beam[:beam.index(eos_id)]
l = min(len(tgt), len(beam))
score = len([i for i in xrange(l) if tgt[i] == beam[i]]) / float(len(tgt))
hist_score = 20.0 if str([b for b in beam if b > 0]) in history_s else 0.0
if score < 1.0:
score -= hist_score
if score > best_score:
best = beam
best_score = score
return best, best_score
def score_beams_prog(beams, target, inp, history, print_out=False,
test_mode=False):
"""Score beams for program synthesis."""
tgt_prog = linearize(target, program_utils.prog_vocab, True, 1)
hist_progs = [linearize(h, program_utils.prog_vocab, True, 1)
for h in history]
tgt_set = set(target)
if print_out:
print("target: ", tgt_prog)
inps, tgt_outs = [], []
for i in xrange(3):
ilist = [inp[i + 1, l] for l in xrange(inp.shape[1])]
clist = [program_utils.prog_vocab[x] for x in ilist if x > 0]
olist = clist[clist.index("]") + 1:] # outputs
clist = clist[1:clist.index("]")] # inputs
inps.append([int(x) for x in clist])
if olist[0] == "[": # olist may be [int] or just int
tgt_outs.append(str([int(x) for x in olist[1:-1]]))
else:
if len(olist) == 1:
tgt_outs.append(olist[0])
else:
print([program_utils.prog_vocab[x] for x in ilist if x > 0])
print(olist)
print(tgt_prog)
print(program_utils.evaluate(tgt_prog, {"a": inps[-1]}))
print("AAAAA")
tgt_outs.append(olist[0])
if not test_mode:
for _ in xrange(7):
ilen = np.random.randint(len(target) - 3) + 1
inps.append([random.choice(range(-15, 15)) for _ in range(ilen)])
tgt_outs.extend([program_utils.evaluate(tgt_prog, {"a": inp})
for inp in inps[3:]])
best, best_prog, best_score = None, "", -1000.0
for beam in beams:
b_prog = linearize(beam, program_utils.prog_vocab, True, 1)
b_set = set(beam)
jsim = len(tgt_set & b_set) / float(len(tgt_set | b_set))
b_outs = [program_utils.evaluate(b_prog, {"a": inp}) for inp in inps]
errs = len([x for x in b_outs if x == "ERROR"])
imatches = len([i for i in xrange(3) if b_outs[i] == tgt_outs[i]])
perfect = 10.0 if imatches == 3 else 0.0
hist_score = 20.0 if b_prog in hist_progs else 0.0
if test_mode:
score = perfect - errs
else:
matches = len([i for i in xrange(10) if b_outs[i] == tgt_outs[i]])
score = perfect + matches + jsim - errs
if score < 10.0:
score -= hist_score
# print b_prog
# print "jsim: ", jsim, " errs: ", errs, " mtchs: ", matches, " s: ", score
if score > best_score:
best = beam
best_prog = b_prog
best_score = score
if print_out:
print("best score: ", best_score, " best prog: ", best_prog)
return best, best_score
def get_best_beam(beam_model, sess, inp, target, batch_size, beam_size,
bucket, history, p, test_mode=False):
"""Run beam_model, score beams, and return the best as target and in input."""
_, output_logits, _, _ = beam_model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size)
new_targets, new_firsts, scores, new_inp = [], [], [], np.copy(inp)
for b in xrange(batch_size):
outputs = []
history_b = [[h[b, 0, l] for l in xrange(data.bins[bucket])]
for h in history]
for beam_idx in xrange(beam_size):
outputs.append([int(o[beam_idx * batch_size + b])
for o in output_logits])
target_t = [target[b, 0, l] for l in xrange(data.bins[bucket])]
best, best_score = score_beams(
outputs, [t for t in target_t if t > 0], inp[b, :, :],
[[t for t in h if t > 0] for h in history_b], p, test_mode=test_mode)
scores.append(best_score)
if 1 in best: # Only until _EOS.
best = best[:best.index(1) + 1]
best += [0 for _ in xrange(len(target_t) - len(best))]
new_targets.append([best])
first, _ = score_beams(
outputs, [t for t in target_t if t > 0], inp[b, :, :],
[[t for t in h if t > 0] for h in history_b], p, test_mode=True)
if 1 in first: # Only until _EOS.
first = first[:first.index(1) + 1]
first += [0 for _ in xrange(len(target_t) - len(first))]
new_inp[b, 0, :] = np.array(first, dtype=np.int32)
new_firsts.append([first])
# Change target if we found a great answer.
new_target = np.array(new_targets, dtype=np.int32)
for b in xrange(batch_size):
if scores[b] >= 10.0:
target[b, 0, :] = new_target[b, 0, :]
new_first = np.array(new_firsts, dtype=np.int32)
return new_target, new_first, new_inp, scores
def train():
"""Train the model."""
batch_size = FLAGS.batch_size * FLAGS.num_gpus
(model, beam_model, min_length, max_length, checkpoint_dir,
(train_set, dev_set, en_vocab_path, fr_vocab_path), sv, sess) = initialize()
with sess.as_default():
quant_op = model.quantize_op
max_cur_length = min(min_length + 3, max_length)
prev_acc_perp = [1000000 for _ in xrange(5)]
prev_seq_err = 1.0
is_chief = FLAGS.task < 1
do_report = False
# Main traning loop.
while not sv.ShouldStop():
global_step, max_cur_length, learning_rate = sess.run(
[model.global_step, model.cur_length, model.lr])
acc_loss, acc_l1, acc_total, acc_errors, acc_seq_err = 0.0, 0.0, 0, 0, 0
acc_grad_norm, step_count, step_c1, step_time = 0.0, 0, 0, 0.0
# For words in the word vector file, set their embedding at start.
bound1 = FLAGS.steps_per_checkpoint - 1
if FLAGS.word_vector_file_en and global_step < bound1 and is_chief:
assign_vectors(FLAGS.word_vector_file_en, "embedding:0",
en_vocab_path, sess)
if FLAGS.max_target_vocab < 1:
assign_vectors(FLAGS.word_vector_file_en, "target_embedding:0",
en_vocab_path, sess)
if FLAGS.word_vector_file_fr and global_step < bound1 and is_chief:
assign_vectors(FLAGS.word_vector_file_fr, "embedding:0",
fr_vocab_path, sess)
if FLAGS.max_target_vocab < 1:
assign_vectors(FLAGS.word_vector_file_fr, "target_embedding:0",
fr_vocab_path, sess)
for _ in xrange(FLAGS.steps_per_checkpoint):
step_count += 1
step_c1 += 1
global_step = int(model.global_step.eval())
train_beam_anneal = global_step / float(FLAGS.train_beam_anneal)
train_beam_freq = FLAGS.train_beam_freq * min(1.0, train_beam_anneal)
p = random.choice(FLAGS.problem.split("-"))
train_set = global_train_set[p][-1]
bucket_id = get_bucket_id(train_buckets_scale[p][-1], max_cur_length,
train_set)
# Prefer longer stuff 60% of time if not wmt.
if np.random.randint(100) < 60 and FLAGS.problem != "wmt":
bucket1 = get_bucket_id(train_buckets_scale[p][-1], max_cur_length,
train_set)
bucket_id = max(bucket1, bucket_id)
# Run a step and time it.
start_time = time.time()
inp, target = data.get_batch(bucket_id, batch_size, train_set,
FLAGS.height)
noise_param = math.sqrt(math.pow(global_step + 1, -0.55) *
prev_seq_err) * FLAGS.grad_noise_scale
# In multi-step mode, we use best from beam for middle steps.
state, new_target, scores, history = None, None, None, []
while (FLAGS.beam_size > 1 and
train_beam_freq > np.random.random_sample()):
# Get the best beam (no training, just forward model).
new_target, new_first, new_inp, scores = get_best_beam(
beam_model, sess, inp, target,
batch_size, FLAGS.beam_size, bucket_id, history, p)
history.append(new_first)
# Training step with the previous input and the best beam as target.
_, _, _, state = model.step(sess, inp, new_target, FLAGS.do_train,
noise_param, update_mem=True, state=state)
# Change input to the new one for the next step.
inp = new_inp
# If all results are great, stop (todo: not to wait for all?).
if FLAGS.nprint > 1:
print(scores)
if sum(scores) / float(len(scores)) >= 10.0:
break
# The final step with the true target.
loss, res, gnorm, _ = model.step(
sess, inp, target, FLAGS.do_train, noise_param,
update_mem=True, state=state)
step_time += time.time() - start_time
acc_grad_norm += 0.0 if gnorm is None else float(gnorm)
# Accumulate statistics.
acc_loss += loss
acc_l1 += loss
errors, total, seq_err = data.accuracy(
inp, res, target, batch_size, 0, new_target, scores)
if FLAGS.nprint > 1:
print("seq_err: ", seq_err)
acc_total += total
acc_errors += errors
acc_seq_err += seq_err
# Report summary every 10 steps.
if step_count + 3 > FLAGS.steps_per_checkpoint:
do_report = True # Don't polute plot too early.
if is_chief and step_count % 10 == 1 and do_report:
cur_loss = acc_l1 / float(step_c1)
acc_l1, step_c1 = 0.0, 0
cur_perp = data.safe_exp(cur_loss)
summary = tf.Summary()
summary.value.extend(
[tf.Summary.Value(tag="log_perplexity", simple_value=cur_loss),
tf.Summary.Value(tag="perplexity", simple_value=cur_perp)])
sv.SummaryComputed(sess, summary, global_step)
# Normalize and print out accumulated statistics.
acc_loss /= step_count
step_time /= FLAGS.steps_per_checkpoint
acc_seq_err = float(acc_seq_err) / (step_count * batch_size)
prev_seq_err = max(0.0, acc_seq_err - 0.02) # No noise at error < 2%.
acc_errors = float(acc_errors) / acc_total if acc_total > 0 else 1.0
t_size = float(sum([len(x) for x in train_set])) / float(1000000)
msg = ("step %d step-time %.2f train-size %.3f lr %.6f grad-norm %.4f"
% (global_step + 1, step_time, t_size, learning_rate,
acc_grad_norm / FLAGS.steps_per_checkpoint))
data.print_out("%s len %d ppl %.6f errors %.2f sequence-errors %.2f" %
(msg, max_cur_length, data.safe_exp(acc_loss),
100*acc_errors, 100*acc_seq_err))
# If errors are below the curriculum threshold, move curriculum forward.
is_good = FLAGS.curriculum_ppx > data.safe_exp(acc_loss)
is_good = is_good and FLAGS.curriculum_seq > acc_seq_err
if is_good and is_chief:
if FLAGS.quantize:
# Quantize weights.
data.print_out(" Quantizing parameters.")
sess.run([quant_op])
# Increase current length (until the next with training data).
sess.run(model.cur_length_incr_op)
# Forget last perplexities if we're not yet at the end.
if max_cur_length < max_length:
prev_acc_perp.append(1000000)
# Lower learning rate if we're worse than the last 5 checkpoints.
acc_perp = data.safe_exp(acc_loss)
if acc_perp > max(prev_acc_perp[-5:]) and is_chief:
sess.run(model.lr_decay_op)
prev_acc_perp.append(acc_perp)
# Save checkpoint.
if is_chief:
checkpoint_path = os.path.join(checkpoint_dir, "neural_gpu.ckpt")
model.saver.save(sess, checkpoint_path,
global_step=model.global_step)
# Run evaluation.
bin_bound = 4
for p in FLAGS.problem.split("-"):
total_loss, total_err, tl_counter = 0.0, 0.0, 0
for bin_id in xrange(len(data.bins)):
if bin_id < bin_bound or bin_id % FLAGS.eval_bin_print == 1:
err, _, loss = single_test(bin_id, model, sess, FLAGS.nprint,
batch_size * 4, dev_set, p,
beam_model=beam_model)
if loss > 0.0:
total_loss += loss
total_err += err
tl_counter += 1
test_loss = total_loss / max(1, tl_counter)
test_err = total_err / max(1, tl_counter)
test_perp = data.safe_exp(test_loss)
summary = tf.Summary()
summary.value.extend(
[tf.Summary.Value(tag="test/%s/loss" % p, simple_value=test_loss),
tf.Summary.Value(tag="test/%s/error" % p, simple_value=test_err),
tf.Summary.Value(tag="test/%s/perplexity" % p,
simple_value=test_perp)])
sv.SummaryComputed(sess, summary, global_step)
def linearize(output, rev_fr_vocab, simple_tokenizer=None, eos_id=wmt.EOS_ID):
# If there is an EOS symbol in outputs, cut them at that point (WMT).
if eos_id in output:
output = output[:output.index(eos_id)]
# Print out French sentence corresponding to outputs.
if simple_tokenizer or FLAGS.simple_tokenizer:
vlen = len(rev_fr_vocab)
def vget(o):
if o < vlen:
return rev_fr_vocab[o]
return "UNK"
return " ".join([vget(o) for o in output])
else:
return wmt.basic_detokenizer([rev_fr_vocab[o] for o in output])
def evaluate():
"""Evaluate an existing model."""
batch_size = FLAGS.batch_size * FLAGS.num_gpus
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
(model, beam_model, _, _, _,
(_, dev_set, en_vocab_path, fr_vocab_path), _, sess) = initialize(sess)
for p in FLAGS.problem.split("-"):
for bin_id in xrange(len(data.bins)):
if (FLAGS.task >= 0 and bin_id > 4) or (FLAGS.nprint == 0 and
bin_id > 8 and p == "wmt"):
break
single_test(bin_id, model, sess, FLAGS.nprint, batch_size, dev_set, p,
beam_model=beam_model)
path = FLAGS.test_file_prefix
xid = "" if FLAGS.task < 0 else ("%.4d" % (FLAGS.task+FLAGS.decode_offset))
en_path, fr_path = path + ".en" + xid, path + ".fr" + xid
# Evaluate the test file if they exist.
if path and tf.gfile.Exists(en_path) and tf.gfile.Exists(fr_path):
data.print_out("Translating test set %s" % en_path)
# Read lines.
en_lines, fr_lines = [], []
with tf.gfile.GFile(en_path, mode="r") as f:
for line in f:
en_lines.append(line.strip())
with tf.gfile.GFile(fr_path, mode="r") as f:
for line in f:
fr_lines.append(line.strip())
# Tokenize and convert to ids.
en_vocab, _ = wmt.initialize_vocabulary(en_vocab_path)
_, rev_fr_vocab = wmt.initialize_vocabulary(fr_vocab_path)
if FLAGS.simple_tokenizer:
en_ids = [wmt.sentence_to_token_ids(
l, en_vocab, tokenizer=wmt.space_tokenizer,
normalize_digits=FLAGS.normalize_digits)
for l in en_lines]
else:
en_ids = [wmt.sentence_to_token_ids(l, en_vocab) for l in en_lines]
# Translate.
results = []
for idx, token_ids in enumerate(en_ids):
if idx % 5 == 0:
data.print_out("Translating example %d of %d." % (idx, len(en_ids)))
# Which bucket does it belong to?
buckets = [b for b in xrange(len(data.bins))
if data.bins[b] >= len(token_ids)]
if buckets:
result, result_cost = [], 100000000.0
for bucket_id in buckets:
if data.bins[bucket_id] > MAXLEN_F * len(token_ids) + EVAL_LEN_INCR:
break
# Get a 1-element batch to feed the sentence to the model.
used_batch_size = 1 # batch_size
inp, target = data.get_batch(
bucket_id, used_batch_size, None, FLAGS.height,
preset=([token_ids], [[]]))
loss, output_logits, _, _ = model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size)
outputs = [int(o[0]) for o in output_logits]
loss = loss[0] - (data.bins[bucket_id] * FLAGS.length_norm)
if FLAGS.simple_tokenizer:
cur_out = outputs
if wmt.EOS_ID in cur_out:
cur_out = cur_out[:cur_out.index(wmt.EOS_ID)]
res_tags = [rev_fr_vocab[o] for o in cur_out]
bad_words, bad_brack = wmt.parse_constraints(token_ids, res_tags)
loss += 1000.0 * bad_words + 100.0 * bad_brack
# print (bucket_id, loss)
if loss < result_cost:
result = outputs
result_cost = loss
final = linearize(result, rev_fr_vocab)
results.append("%s\t%s\n" % (final, fr_lines[idx]))
# print result_cost
sys.stderr.write(results[-1])
sys.stderr.flush()
else:
sys.stderr.write("TOOO_LONG\t%s\n" % fr_lines[idx])
sys.stderr.flush()
if xid:
decode_suffix = "beam%dln%dn" % (FLAGS.beam_size,
int(100 * FLAGS.length_norm))
with tf.gfile.GFile(path + ".res" + decode_suffix + xid, mode="w") as f:
for line in results:
f.write(line)
def mul(l):
res = 1.0
for s in l:
res *= s
return res
def interactive():
"""Interactively probe an existing model."""
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Initialize model.
(model, _, _, _, _, (_, _, en_path, fr_path), _, _) = initialize(sess)
# Load vocabularies.
en_vocab, rev_en_vocab = wmt.initialize_vocabulary(en_path)
_, rev_fr_vocab = wmt.initialize_vocabulary(fr_path)
# Print out vectors and variables.
if FLAGS.nprint > 0 and FLAGS.word_vector_file_en:
print_vectors("embedding:0", en_path, FLAGS.word_vector_file_en)
if FLAGS.nprint > 0 and FLAGS.word_vector_file_fr:
print_vectors("target_embedding:0", fr_path, FLAGS.word_vector_file_fr)
total = 0
for v in tf.trainable_variables():
shape = v.get_shape().as_list()
total += mul(shape)
print(v.name, shape, mul(shape))
print(total)
# Start interactive loop.
sys.stdout.write("Input to Neural GPU Translation Model.\n")
sys.stdout.write("> ")
sys.stdout.flush()
inpt = sys.stdin.readline(), ""
while inpt:
cures = []
# Get token-ids for the input sentence.
if FLAGS.simple_tokenizer:
token_ids = wmt.sentence_to_token_ids(
inpt, en_vocab, tokenizer=wmt.space_tokenizer,
normalize_digits=FLAGS.normalize_digits)
else:
token_ids = wmt.sentence_to_token_ids(inpt, en_vocab)
print([rev_en_vocab[t] for t in token_ids])
# Which bucket does it belong to?
buckets = [b for b in xrange(len(data.bins))
if data.bins[b] >= max(len(token_ids), len(cures))]
if cures:
buckets = [buckets[0]]
if buckets:
result, result_cost = [], 10000000.0
for bucket_id in buckets:
if data.bins[bucket_id] > MAXLEN_F * len(token_ids) + EVAL_LEN_INCR:
break
glen = 1
for gen_idx in xrange(glen):
# Get a 1-element batch to feed the sentence to the model.
inp, target = data.get_batch(
bucket_id, 1, None, FLAGS.height, preset=([token_ids], [cures]))
loss, output_logits, _, _ = model.step(
sess, inp, target, None, beam_size=FLAGS.beam_size,
update_mem=False)
# If it is a greedy decoder, outputs are argmaxes of output_logits.
if FLAGS.beam_size > 1:
outputs = [int(o) for o in output_logits]
else:
loss = loss[0] - (data.bins[bucket_id] * FLAGS.length_norm)
outputs = [int(np.argmax(logit, axis=1))
for logit in output_logits]
print([rev_fr_vocab[t] for t in outputs])
print(loss, data.bins[bucket_id])
print(linearize(outputs, rev_fr_vocab))
cures.append(outputs[gen_idx])
print(cures)
print(linearize(cures, rev_fr_vocab))
if FLAGS.simple_tokenizer:
cur_out = outputs
if wmt.EOS_ID in cur_out:
cur_out = cur_out[:cur_out.index(wmt.EOS_ID)]
res_tags = [rev_fr_vocab[o] for o in cur_out]
bad_words, bad_brack = wmt.parse_constraints(token_ids, res_tags)
loss += 1000.0 * bad_words + 100.0 * bad_brack
if loss < result_cost:
result = outputs
result_cost = loss
print("FINAL", result_cost)
print([rev_fr_vocab[t] for t in result])
print(linearize(result, rev_fr_vocab))
else:
print("TOOO_LONG")
sys.stdout.write("> ")
sys.stdout.flush()
inpt = sys.stdin.readline(), ""
def main(_):
if FLAGS.mode == 0:
train()
elif FLAGS.mode == 1:
evaluate()
else:
interactive()
if __name__ == "__main__":
tf.app.run()
|