File size: 5,841 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Runs evaluation using OpenImages groundtruth and predictions.

Example usage:
python \
models/research/object_detection/metrics/oid_vrd_challenge_evaluation.py \
    --input_annotations_vrd=/path/to/input/annotations-human-bbox.csv \
    --input_annotations_labels=/path/to/input/annotations-label.csv \
    --input_class_labelmap=/path/to/input/class_labelmap.pbtxt \
    --input_relationship_labelmap=/path/to/input/relationship_labelmap.pbtxt \
    --input_predictions=/path/to/input/predictions.csv \
    --output_metrics=/path/to/output/metric.csv \

CSVs with bounding box annotations and image label (including the image URLs)
can be downloaded from the Open Images Challenge website:
https://storage.googleapis.com/openimages/web/challenge.html
The format of the input csv and the metrics itself are described on the
challenge website.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import pandas as pd
from google.protobuf import text_format

from object_detection.metrics import io_utils
from object_detection.metrics import oid_vrd_challenge_evaluation_utils as utils
from object_detection.protos import string_int_label_map_pb2
from object_detection.utils import vrd_evaluation


def _load_labelmap(labelmap_path):
  """Loads labelmap from the labelmap path.

  Args:
    labelmap_path: Path to the labelmap.

  Returns:
    A dictionary mapping class name to class numerical id.
  """

  label_map = string_int_label_map_pb2.StringIntLabelMap()
  with open(labelmap_path, 'r') as fid:
    label_map_string = fid.read()
    text_format.Merge(label_map_string, label_map)
  labelmap_dict = {}
  for item in label_map.item:
    labelmap_dict[item.name] = item.id
  return labelmap_dict


def _swap_labelmap_dict(labelmap_dict):
  """Swaps keys and labels in labelmap.

  Args:
    labelmap_dict: Input dictionary.

  Returns:
    A dictionary mapping class name to class numerical id.
  """
  return dict((v, k) for k, v in labelmap_dict.iteritems())


def main(parsed_args):
  all_box_annotations = pd.read_csv(parsed_args.input_annotations_boxes)
  all_label_annotations = pd.read_csv(parsed_args.input_annotations_labels)
  all_annotations = pd.concat([all_box_annotations, all_label_annotations])

  class_label_map = _load_labelmap(parsed_args.input_class_labelmap)
  relationship_label_map = _load_labelmap(
      parsed_args.input_relationship_labelmap)

  relation_evaluator = vrd_evaluation.VRDRelationDetectionEvaluator()
  phrase_evaluator = vrd_evaluation.VRDPhraseDetectionEvaluator()

  for _, groundtruth in enumerate(all_annotations.groupby('ImageID')):
    image_id, image_groundtruth = groundtruth
    groundtruth_dictionary = utils.build_groundtruth_vrd_dictionary(
        image_groundtruth, class_label_map, relationship_label_map)

    relation_evaluator.add_single_ground_truth_image_info(
        image_id, groundtruth_dictionary)
    phrase_evaluator.add_single_ground_truth_image_info(image_id,
                                                        groundtruth_dictionary)

  all_predictions = pd.read_csv(parsed_args.input_predictions)
  for _, prediction_data in enumerate(all_predictions.groupby('ImageID')):
    image_id, image_predictions = prediction_data
    prediction_dictionary = utils.build_predictions_vrd_dictionary(
        image_predictions, class_label_map, relationship_label_map)

    relation_evaluator.add_single_detected_image_info(image_id,
                                                      prediction_dictionary)
    phrase_evaluator.add_single_detected_image_info(image_id,
                                                    prediction_dictionary)

  relation_metrics = relation_evaluator.evaluate(
      relationships=_swap_labelmap_dict(relationship_label_map))
  phrase_metrics = phrase_evaluator.evaluate(
      relationships=_swap_labelmap_dict(relationship_label_map))

  with open(parsed_args.output_metrics, 'w') as fid:
    io_utils.write_csv(fid, relation_metrics)
    io_utils.write_csv(fid, phrase_metrics)


if __name__ == '__main__':

  parser = argparse.ArgumentParser(
      description=
      'Evaluate Open Images Visual Relationship Detection predictions.')
  parser.add_argument(
      '--input_annotations_vrd',
      required=True,
      help='File with groundtruth vrd annotations.')
  parser.add_argument(
      '--input_annotations_labels',
      required=True,
      help='File with groundtruth labels annotations')
  parser.add_argument(
      '--input_predictions',
      required=True,
      help="""File with detection predictions; NOTE: no postprocessing is
      applied in the evaluation script.""")
  parser.add_argument(
      '--input_class_labelmap',
      required=True,
      help="""OpenImages Challenge labelmap; note: it is expected to include
      attributes.""")
  parser.add_argument(
      '--input_relationship_labelmap',
      required=True,
      help="""OpenImages Challenge relationship labelmap.""")
  parser.add_argument(
      '--output_metrics', required=True, help='Output file with csv metrics')

  args = parser.parse_args()
  main(args)