File size: 4,797 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Binary to run train and evaluation on object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import flags

import tensorflow.compat.v1 as tf

from object_detection import model_hparams
from object_detection import model_lib

flags.DEFINE_string(
    'model_dir', None, 'Path to output model directory '
    'where event and checkpoint files will be written.')
flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
                    'file.')
flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.')
flags.DEFINE_boolean('eval_training_data', False,
                     'If training data should be evaluated for this job. Note '
                     'that one call only use this in eval-only mode, and '
                     '`checkpoint_dir` must be supplied.')
flags.DEFINE_integer('sample_1_of_n_eval_examples', 1, 'Will sample one of '
                     'every n eval input examples, where n is provided.')
flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample '
                     'one of every n train input examples for evaluation, '
                     'where n is provided. This is only used if '
                     '`eval_training_data` is True.')
flags.DEFINE_string(
    'hparams_overrides', None, 'Hyperparameter overrides, '
    'represented as a string containing comma-separated '
    'hparam_name=value pairs.')
flags.DEFINE_string(
    'checkpoint_dir', None, 'Path to directory holding a checkpoint.  If '
    '`checkpoint_dir` is provided, this binary operates in eval-only mode, '
    'writing resulting metrics to `model_dir`.')
flags.DEFINE_boolean(
    'run_once', False, 'If running in eval-only mode, whether to run just '
    'one round of eval vs running continuously (default).'
)
flags.DEFINE_integer(
    'max_eval_retries', 0, 'If running continuous eval, the maximum number of '
    'retries upon encountering tf.errors.InvalidArgumentError. If negative, '
    'will always retry the evaluation.'
)
FLAGS = flags.FLAGS


def main(unused_argv):
  flags.mark_flag_as_required('model_dir')
  flags.mark_flag_as_required('pipeline_config_path')
  config = tf.estimator.RunConfig(model_dir=FLAGS.model_dir)

  train_and_eval_dict = model_lib.create_estimator_and_inputs(
      run_config=config,
      hparams=model_hparams.create_hparams(FLAGS.hparams_overrides),
      pipeline_config_path=FLAGS.pipeline_config_path,
      train_steps=FLAGS.num_train_steps,
      sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples,
      sample_1_of_n_eval_on_train_examples=(
          FLAGS.sample_1_of_n_eval_on_train_examples))
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
  eval_input_fns = train_and_eval_dict['eval_input_fns']
  eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  if FLAGS.checkpoint_dir:
    if FLAGS.eval_training_data:
      name = 'training_data'
      input_fn = eval_on_train_input_fn
    else:
      name = 'validation_data'
      # The first eval input will be evaluated.
      input_fn = eval_input_fns[0]
    if FLAGS.run_once:
      estimator.evaluate(input_fn,
                         steps=None,
                         checkpoint_path=tf.train.latest_checkpoint(
                             FLAGS.checkpoint_dir))
    else:
      model_lib.continuous_eval(estimator, FLAGS.checkpoint_dir, input_fn,
                                train_steps, name, FLAGS.max_eval_retries)
  else:
    train_spec, eval_specs = model_lib.create_train_and_eval_specs(
        train_input_fn,
        eval_input_fns,
        eval_on_train_input_fn,
        predict_input_fn,
        train_steps,
        eval_on_train_data=False)

    # Currently only a single Eval Spec is allowed.
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])


if __name__ == '__main__':
  tf.app.run()