File size: 11,770 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Label map utility functions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import logging

import numpy as np
from six import string_types
from six.moves import range
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.protos import string_int_label_map_pb2

_LABEL_OFFSET = 1


def _validate_label_map(label_map):
  """Checks if a label map is valid.

  Args:
    label_map: StringIntLabelMap to validate.

  Raises:
    ValueError: if label map is invalid.
  """
  for item in label_map.item:
    if item.id < 0:
      raise ValueError('Label map ids should be >= 0.')
    if (item.id == 0 and item.name != 'background' and
        item.display_name != 'background'):
      raise ValueError('Label map id 0 is reserved for the background label')


def create_category_index(categories):
  """Creates dictionary of COCO compatible categories keyed by category id.

  Args:
    categories: a list of dicts, each of which has the following keys:
      'id': (required) an integer id uniquely identifying this category.
      'name': (required) string representing category name
        e.g., 'cat', 'dog', 'pizza'.

  Returns:
    category_index: a dict containing the same entries as categories, but keyed
      by the 'id' field of each category.
  """
  category_index = {}
  for cat in categories:
    category_index[cat['id']] = cat
  return category_index


def get_max_label_map_index(label_map):
  """Get maximum index in label map.

  Args:
    label_map: a StringIntLabelMapProto

  Returns:
    an integer
  """
  return max([item.id for item in label_map.item])


def convert_label_map_to_categories(label_map,
                                    max_num_classes,
                                    use_display_name=True):
  """Given label map proto returns categories list compatible with eval.

  This function converts label map proto and returns a list of dicts, each of
  which  has the following keys:
    'id': (required) an integer id uniquely identifying this category.
    'name': (required) string representing category name
      e.g., 'cat', 'dog', 'pizza'.
    'keypoints': (optional) a dictionary of keypoint string 'label' to integer
      'id'.
  We only allow class into the list if its id-label_id_offset is
  between 0 (inclusive) and max_num_classes (exclusive).
  If there are several items mapping to the same id in the label map,
  we will only keep the first one in the categories list.

  Args:
    label_map: a StringIntLabelMapProto or None.  If None, a default categories
      list is created with max_num_classes categories.
    max_num_classes: maximum number of (consecutive) label indices to include.
    use_display_name: (boolean) choose whether to load 'display_name' field as
      category name.  If False or if the display_name field does not exist, uses
      'name' field as category names instead.

  Returns:
    categories: a list of dictionaries representing all possible categories.
  """
  categories = []
  list_of_ids_already_added = []
  if not label_map:
    label_id_offset = 1
    for class_id in range(max_num_classes):
      categories.append({
          'id': class_id + label_id_offset,
          'name': 'category_{}'.format(class_id + label_id_offset)
      })
    return categories
  for item in label_map.item:
    if not 0 < item.id <= max_num_classes:
      logging.info(
          'Ignore item %d since it falls outside of requested '
          'label range.', item.id)
      continue
    if use_display_name and item.HasField('display_name'):
      name = item.display_name
    else:
      name = item.name
    if item.id not in list_of_ids_already_added:
      list_of_ids_already_added.append(item.id)
      category = {'id': item.id, 'name': name}
      if item.keypoints:
        keypoints = {}
        list_of_keypoint_ids = []
        for kv in item.keypoints:
          if kv.id in list_of_keypoint_ids:
            raise ValueError('Duplicate keypoint ids are not allowed. '
                             'Found {} more than once'.format(kv.id))
          keypoints[kv.label] = kv.id
          list_of_keypoint_ids.append(kv.id)
        category['keypoints'] = keypoints
      categories.append(category)
  return categories


def load_labelmap(path):
  """Loads label map proto.

  Args:
    path: path to StringIntLabelMap proto text file.
  Returns:
    a StringIntLabelMapProto
  """
  with tf.io.gfile.GFile(path, 'r') as fid:
    label_map_string = fid.read()
    label_map = string_int_label_map_pb2.StringIntLabelMap()
    try:
      text_format.Merge(label_map_string, label_map)
    except text_format.ParseError:
      label_map.ParseFromString(label_map_string)
  _validate_label_map(label_map)
  return label_map


def get_label_map_dict(label_map_path_or_proto,
                       use_display_name=False,
                       fill_in_gaps_and_background=False):
  """Reads a label map and returns a dictionary of label names to id.

  Args:
    label_map_path_or_proto: path to StringIntLabelMap proto text file or the
      proto itself.
    use_display_name: whether to use the label map items' display names as keys.
    fill_in_gaps_and_background: whether to fill in gaps and background with
    respect to the id field in the proto. The id: 0 is reserved for the
    'background' class and will be added if it is missing. All other missing
    ids in range(1, max(id)) will be added with a dummy class name
    ("class_<id>") if they are missing.

  Returns:
    A dictionary mapping label names to id.

  Raises:
    ValueError: if fill_in_gaps_and_background and label_map has non-integer or
    negative values.
  """
  if isinstance(label_map_path_or_proto, string_types):
    label_map = load_labelmap(label_map_path_or_proto)
  else:
    _validate_label_map(label_map_path_or_proto)
    label_map = label_map_path_or_proto

  label_map_dict = {}
  for item in label_map.item:
    if use_display_name:
      label_map_dict[item.display_name] = item.id
    else:
      label_map_dict[item.name] = item.id

  if fill_in_gaps_and_background:
    values = set(label_map_dict.values())

    if 0 not in values:
      label_map_dict['background'] = 0
    if not all(isinstance(value, int) for value in values):
      raise ValueError('The values in label map must be integers in order to'
                       'fill_in_gaps_and_background.')
    if not all(value >= 0 for value in values):
      raise ValueError('The values in the label map must be positive.')

    if len(values) != max(values) + 1:
      # there are gaps in the labels, fill in gaps.
      for value in range(1, max(values)):
        if value not in values:
          # TODO(rathodv): Add a prefix 'class_' here once the tool to generate
          # teacher annotation adds this prefix in the data.
          label_map_dict[str(value)] = value

  return label_map_dict


def get_label_map_hierarchy_lut(label_map_path_or_proto,
                                include_identity=False):
  """Reads a label map and returns ancestors and descendants in the hierarchy.

  The function returns the ancestors and descendants as separate look up tables
   (LUT) numpy arrays of shape [max_id, max_id] where lut[i,j] = 1 when there is
   a hierarchical relationship between class i and j.

  Args:
    label_map_path_or_proto: path to StringIntLabelMap proto text file or the
      proto itself.
    include_identity: Boolean to indicate whether to include a class element
      among its ancestors and descendants. Setting this will result in the lut
      diagonal being set to 1.

  Returns:
    ancestors_lut: Look up table with the ancestors.
    descendants_lut: Look up table with the descendants.
  """
  if isinstance(label_map_path_or_proto, string_types):
    label_map = load_labelmap(label_map_path_or_proto)
  else:
    _validate_label_map(label_map_path_or_proto)
    label_map = label_map_path_or_proto

  hierarchy_dict = {
      'ancestors': collections.defaultdict(list),
      'descendants': collections.defaultdict(list)
  }
  max_id = -1
  for item in label_map.item:
    max_id = max(max_id, item.id)
    for ancestor in item.ancestor_ids:
      hierarchy_dict['ancestors'][item.id].append(ancestor)
    for descendant in item.descendant_ids:
      hierarchy_dict['descendants'][item.id].append(descendant)

  def get_graph_relations_tensor(graph_relations):
    graph_relations_tensor = np.zeros([max_id, max_id])
    for id_val, ids_related in graph_relations.items():
      id_val = int(id_val) - _LABEL_OFFSET
      for id_related in ids_related:
        id_related -= _LABEL_OFFSET
        graph_relations_tensor[id_val, id_related] = 1
    if include_identity:
      graph_relations_tensor += np.eye(max_id)
    return graph_relations_tensor

  ancestors_lut = get_graph_relations_tensor(hierarchy_dict['ancestors'])
  descendants_lut = get_graph_relations_tensor(hierarchy_dict['descendants'])
  return ancestors_lut, descendants_lut


def create_categories_from_labelmap(label_map_path, use_display_name=True):
  """Reads a label map and returns categories list compatible with eval.

  This function converts label map proto and returns a list of dicts, each of
  which  has the following keys:
    'id': an integer id uniquely identifying this category.
    'name': string representing category name e.g., 'cat', 'dog'.
    'keypoints': a dictionary of keypoint string label to integer id. It is only
      returned when available in label map proto.

  Args:
    label_map_path: Path to `StringIntLabelMap` proto text file.
    use_display_name: (boolean) choose whether to load 'display_name' field
      as category name.  If False or if the display_name field does not exist,
      uses 'name' field as category names instead.

  Returns:
    categories: a list of dictionaries representing all possible categories.
  """
  label_map = load_labelmap(label_map_path)
  max_num_classes = max(item.id for item in label_map.item)
  return convert_label_map_to_categories(label_map, max_num_classes,
                                         use_display_name)


def create_category_index_from_labelmap(label_map_path, use_display_name=True):
  """Reads a label map and returns a category index.

  Args:
    label_map_path: Path to `StringIntLabelMap` proto text file.
    use_display_name: (boolean) choose whether to load 'display_name' field
      as category name.  If False or if the display_name field does not exist,
      uses 'name' field as category names instead.

  Returns:
    A category index, which is a dictionary that maps integer ids to dicts
    containing categories, e.g.
    {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}, ...}
  """
  categories = create_categories_from_labelmap(label_map_path, use_display_name)
  return create_category_index(categories)


def create_class_agnostic_category_index():
  """Creates a category index with a single `object` class."""
  return {1: {'id': 1, 'name': 'object'}}