File size: 10,396 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluates Visual Relations Detection(VRD) result evaluation on an image.

Annotate each VRD result as true positives or false positive according to
a predefined IOU ratio. Multi-class detection is supported by default.
Based on the settings, per image evaluation is performed either on phrase
detection subtask or on relation detection subtask.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from six.moves import range

from object_detection.utils import np_box_list
from object_detection.utils import np_box_list_ops


class PerImageVRDEvaluation(object):
  """Evaluate vrd result of a single image."""

  def __init__(self, matching_iou_threshold=0.5):
    """Initialized PerImageVRDEvaluation by evaluation parameters.

    Args:
      matching_iou_threshold: A ratio of area intersection to union, which is
          the threshold to consider whether a detection is true positive or not;
          in phrase detection subtask.
    """
    self.matching_iou_threshold = matching_iou_threshold

  def compute_detection_tp_fp(self, detected_box_tuples, detected_scores,
                              detected_class_tuples, groundtruth_box_tuples,
                              groundtruth_class_tuples):
    """Evaluates VRD as being tp, fp from a single image.

    Args:
      detected_box_tuples: A numpy array of structures with shape [N,],
          representing N tuples, each tuple containing the same number of named
          bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max].
      detected_scores: A float numpy array of shape [N,], representing
          the confidence scores of the detected N object instances.
      detected_class_tuples: A numpy array of structures shape [N,],
          representing the class labels of the corresponding bounding boxes and
          possibly additional classes.
      groundtruth_box_tuples: A float numpy array of structures with the shape
          [M,], representing M tuples, each tuple containing the same number
          of named bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max].
      groundtruth_class_tuples: A numpy array of structures shape [M,],
          representing  the class labels of the corresponding bounding boxes and
          possibly additional classes.

    Returns:
      scores: A single numpy array with shape [N,], representing N scores
          detected with object class, sorted in descentent order.
      tp_fp_labels: A single boolean numpy array of shape [N,], representing N
          True/False positive label, one label per tuple. The labels are sorted
          so that the order of the labels matches the order of the scores.
      result_mapping: A numpy array with shape [N,] with original index of each
          entry.
    """

    scores, tp_fp_labels, result_mapping = self._compute_tp_fp(
        detected_box_tuples=detected_box_tuples,
        detected_scores=detected_scores,
        detected_class_tuples=detected_class_tuples,
        groundtruth_box_tuples=groundtruth_box_tuples,
        groundtruth_class_tuples=groundtruth_class_tuples)

    return scores, tp_fp_labels, result_mapping

  def _compute_tp_fp(self, detected_box_tuples, detected_scores,
                     detected_class_tuples, groundtruth_box_tuples,
                     groundtruth_class_tuples):
    """Labels as true/false positives detection tuples across all classes.

    Args:
      detected_box_tuples: A numpy array of structures with shape [N,],
          representing N tuples, each tuple containing the same number of named
          bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max]
      detected_scores: A float numpy array of shape [N,], representing
          the confidence scores of the detected N object instances.
      detected_class_tuples: A numpy array of structures shape [N,],
          representing the class labels of the corresponding bounding boxes and
          possibly additional classes.
      groundtruth_box_tuples: A float numpy array of structures with the shape
          [M,], representing M tuples, each tuple containing the same number
          of named bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max]
      groundtruth_class_tuples: A numpy array of structures shape [M,],
          representing  the class labels of the corresponding bounding boxes and
          possibly additional classes.

    Returns:
      scores: A single numpy array with shape [N,], representing N scores
          detected with object class, sorted in descentent order.
      tp_fp_labels: A single boolean numpy array of shape [N,], representing N
          True/False positive label, one label per tuple. The labels are sorted
          so that the order of the labels matches the order of the scores.
      result_mapping: A numpy array with shape [N,] with original index of each
          entry.
    """
    unique_gt_tuples = np.unique(
        np.concatenate((groundtruth_class_tuples, detected_class_tuples)))
    result_scores = []
    result_tp_fp_labels = []
    result_mapping = []

    for unique_tuple in unique_gt_tuples:
      detections_selector = (detected_class_tuples == unique_tuple)
      gt_selector = (groundtruth_class_tuples == unique_tuple)

      selector_mapping = np.where(detections_selector)[0]

      detection_scores_per_tuple = detected_scores[detections_selector]
      detection_box_per_tuple = detected_box_tuples[detections_selector]

      sorted_indices = np.argsort(detection_scores_per_tuple)
      sorted_indices = sorted_indices[::-1]

      tp_fp_labels = self._compute_tp_fp_for_single_class(
          detected_box_tuples=detection_box_per_tuple[sorted_indices],
          groundtruth_box_tuples=groundtruth_box_tuples[gt_selector])
      result_scores.append(detection_scores_per_tuple[sorted_indices])
      result_tp_fp_labels.append(tp_fp_labels)
      result_mapping.append(selector_mapping[sorted_indices])

    if result_scores:
      result_scores = np.concatenate(result_scores)
      result_tp_fp_labels = np.concatenate(result_tp_fp_labels)
      result_mapping = np.concatenate(result_mapping)
    else:
      result_scores = np.array([], dtype=float)
      result_tp_fp_labels = np.array([], dtype=bool)
      result_mapping = np.array([], dtype=int)

    sorted_indices = np.argsort(result_scores)
    sorted_indices = sorted_indices[::-1]

    return result_scores[sorted_indices], result_tp_fp_labels[
        sorted_indices], result_mapping[sorted_indices]

  def _get_overlaps_and_scores_relation_tuples(self, detected_box_tuples,
                                               groundtruth_box_tuples):
    """Computes overlaps and scores between detected and groundtruth tuples.

    Both detections and groundtruth boxes have the same class tuples.

    Args:
      detected_box_tuples: A numpy array of structures with shape [N,],
          representing N tuples, each tuple containing the same number of named
          bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max]
      groundtruth_box_tuples: A float numpy array of structures with the shape
          [M,], representing M tuples, each tuple containing the same number
          of named bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max]

    Returns:
      result_iou: A float numpy array of size
        [num_detected_tuples, num_gt_box_tuples].
    """

    result_iou = np.ones(
        (detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]),
        dtype=float)
    for field in detected_box_tuples.dtype.fields:
      detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field])
      gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field])
      iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field)
      result_iou = np.minimum(iou_field, result_iou)
    return result_iou

  def _compute_tp_fp_for_single_class(self, detected_box_tuples,
                                      groundtruth_box_tuples):
    """Labels boxes detected with the same class from the same image as tp/fp.

    Detection boxes are expected to be already sorted by score.
    Args:
      detected_box_tuples: A numpy array of structures with shape [N,],
          representing N tuples, each tuple containing the same number of named
          bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max]
      groundtruth_box_tuples: A float numpy array of structures with the shape
          [M,], representing M tuples, each tuple containing the same number
          of named bounding boxes.
          Each box is of the format [y_min, x_min, y_max, x_max]

    Returns:
      tp_fp_labels: a boolean numpy array indicating whether a detection is a
          true positive.
    """
    if detected_box_tuples.size == 0:
      return np.array([], dtype=bool)

    min_iou = self._get_overlaps_and_scores_relation_tuples(
        detected_box_tuples, groundtruth_box_tuples)

    num_detected_tuples = detected_box_tuples.shape[0]
    tp_fp_labels = np.zeros(num_detected_tuples, dtype=bool)

    if min_iou.shape[1] > 0:
      max_overlap_gt_ids = np.argmax(min_iou, axis=1)
      is_gt_tuple_detected = np.zeros(min_iou.shape[1], dtype=bool)
      for i in range(num_detected_tuples):
        gt_id = max_overlap_gt_ids[i]
        if min_iou[i, gt_id] >= self.matching_iou_threshold:
          if not is_gt_tuple_detected[gt_id]:
            tp_fp_labels[i] = True
            is_gt_tuple_detected[gt_id] = True

    return tp_fp_labels