Spaces:
Running
Running
File size: 3,050 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Objectives for full-episode.
Implementations of UREX & REINFORCE. Note that these implementations
use a non-parametric baseline to reduce variance. Thus, multiple
samples with the same seed must be taken from the environment.
"""
import tensorflow as tf
import objective
class Reinforce(objective.Objective):
def __init__(self, learning_rate, clip_norm, num_samples,
tau=0.1, bonus_weight=1.0):
super(Reinforce, self).__init__(learning_rate, clip_norm=clip_norm)
self.num_samples = num_samples
assert self.num_samples > 1
self.tau = tau
self.bonus_weight = bonus_weight
self.eps_lambda = 0.0
def get_bonus(self, total_rewards, total_log_probs):
"""Exploration bonus."""
return -self.tau * total_log_probs
def get(self, rewards, pads, values, final_values,
log_probs, prev_log_probs, target_log_probs,
entropies, logits,
target_values, final_target_values):
seq_length = tf.shape(rewards)[0]
not_pad = tf.reshape(1 - pads, [seq_length, -1, self.num_samples])
rewards = not_pad * tf.reshape(rewards, [seq_length, -1, self.num_samples])
log_probs = not_pad * tf.reshape(sum(log_probs), [seq_length, -1, self.num_samples])
total_rewards = tf.reduce_sum(rewards, 0)
total_log_probs = tf.reduce_sum(log_probs, 0)
rewards_and_bonus = (total_rewards +
self.bonus_weight *
self.get_bonus(total_rewards, total_log_probs))
baseline = tf.reduce_mean(rewards_and_bonus, 1, keep_dims=True)
loss = -tf.stop_gradient(rewards_and_bonus - baseline) * total_log_probs
loss = tf.reduce_mean(loss)
raw_loss = loss # TODO
gradient_ops = self.training_ops(
loss, learning_rate=self.learning_rate)
tf.summary.histogram('log_probs', total_log_probs)
tf.summary.histogram('rewards', total_rewards)
tf.summary.scalar('avg_rewards',
tf.reduce_mean(total_rewards))
tf.summary.scalar('loss', loss)
return loss, raw_loss, baseline, gradient_ops, tf.summary.merge_all()
class UREX(Reinforce):
def get_bonus(self, total_rewards, total_log_probs):
"""Exploration bonus."""
discrepancy = total_rewards / self.tau - total_log_probs
normalized_d = self.num_samples * tf.nn.softmax(discrepancy)
return self.tau * normalized_d
|