Spaces:
Running
Running
File size: 13,589 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Objectives to compute loss and value targets.
Implements Actor Critic, PCL (vanilla PCL, Unified PCL, Trust PCL), and TRPO.
"""
import tensorflow as tf
import numpy as np
class Objective(object):
def __init__(self, learning_rate, clip_norm):
self.learning_rate = learning_rate
self.clip_norm = clip_norm
def get_optimizer(self, learning_rate):
"""Optimizer for gradient descent ops."""
return tf.train.AdamOptimizer(learning_rate=learning_rate,
epsilon=2e-4)
def training_ops(self, loss, learning_rate=None):
"""Gradient ops."""
opt = self.get_optimizer(learning_rate)
params = tf.trainable_variables()
grads = tf.gradients(loss, params)
if self.clip_norm:
grads, global_norm = tf.clip_by_global_norm(grads, self.clip_norm)
tf.summary.scalar('grad_global_norm', global_norm)
return opt.apply_gradients(zip(grads, params))
def get(self, rewards, pads, values, final_values,
log_probs, prev_log_probs, target_log_probs,
entropies, logits,
target_values, final_target_values):
"""Get objective calculations."""
raise NotImplementedError()
def discounted_future_sum(values, discount, rollout):
"""Discounted future sum of time-major values."""
discount_filter = tf.reshape(
discount ** tf.range(float(rollout)), [-1, 1, 1])
expanded_values = tf.concat(
[values, tf.zeros([rollout - 1, tf.shape(values)[1]])], 0)
conv_values = tf.transpose(tf.squeeze(tf.nn.conv1d(
tf.expand_dims(tf.transpose(expanded_values), -1), discount_filter,
stride=1, padding='VALID'), -1))
return conv_values
def discounted_two_sided_sum(values, discount, rollout):
"""Discounted two-sided sum of time-major values."""
roll = float(rollout)
discount_filter = tf.reshape(
discount ** tf.abs(tf.range(-roll + 1, roll)), [-1, 1, 1])
expanded_values = tf.concat(
[tf.zeros([rollout - 1, tf.shape(values)[1]]), values,
tf.zeros([rollout - 1, tf.shape(values)[1]])], 0)
conv_values = tf.transpose(tf.squeeze(tf.nn.conv1d(
tf.expand_dims(tf.transpose(expanded_values), -1), discount_filter,
stride=1, padding='VALID'), -1))
return conv_values
def shift_values(values, discount, rollout, final_values=0.0):
"""Shift values up by some amount of time.
Those values that shift from a value beyond the last value
are calculated using final_values.
"""
roll_range = tf.cumsum(tf.ones_like(values[:rollout, :]), 0,
exclusive=True, reverse=True)
final_pad = tf.expand_dims(final_values, 0) * discount ** roll_range
return tf.concat([discount ** rollout * values[rollout:, :],
final_pad], 0)
class ActorCritic(Objective):
"""Standard Actor-Critic."""
def __init__(self, learning_rate, clip_norm=5,
policy_weight=1.0, critic_weight=0.1,
tau=0.1, gamma=1.0, rollout=10,
eps_lambda=0.0, clip_adv=None,
use_target_values=False):
super(ActorCritic, self).__init__(learning_rate, clip_norm=clip_norm)
self.policy_weight = policy_weight
self.critic_weight = critic_weight
self.tau = tau
self.gamma = gamma
self.rollout = rollout
self.clip_adv = clip_adv
self.eps_lambda = tf.get_variable( # TODO: need a better way
'eps_lambda', [], initializer=tf.constant_initializer(eps_lambda),
trainable=False)
self.new_eps_lambda = tf.placeholder(tf.float32, [])
self.assign_eps_lambda = self.eps_lambda.assign(
0.99 * self.eps_lambda + 0.01 * self.new_eps_lambda)
self.use_target_values = use_target_values
def get(self, rewards, pads, values, final_values,
log_probs, prev_log_probs, target_log_probs,
entropies, logits,
target_values, final_target_values):
not_pad = 1 - pads
batch_size = tf.shape(rewards)[1]
entropy = not_pad * sum(entropies)
rewards = not_pad * rewards
value_estimates = not_pad * values
log_probs = not_pad * sum(log_probs)
target_values = not_pad * tf.stop_gradient(target_values)
final_target_values = tf.stop_gradient(final_target_values)
sum_rewards = discounted_future_sum(rewards, self.gamma, self.rollout)
if self.use_target_values:
last_values = shift_values(
target_values, self.gamma, self.rollout,
final_target_values)
else:
last_values = shift_values(value_estimates, self.gamma, self.rollout,
final_values)
future_values = sum_rewards + last_values
baseline_values = value_estimates
adv = tf.stop_gradient(-baseline_values + future_values)
if self.clip_adv:
adv = tf.minimum(self.clip_adv, tf.maximum(-self.clip_adv, adv))
policy_loss = -adv * log_probs
critic_loss = -adv * baseline_values
regularizer = -self.tau * entropy
policy_loss = tf.reduce_mean(
tf.reduce_sum(policy_loss * not_pad, 0))
critic_loss = tf.reduce_mean(
tf.reduce_sum(critic_loss * not_pad, 0))
regularizer = tf.reduce_mean(
tf.reduce_sum(regularizer * not_pad, 0))
# loss for gradient calculation
loss = (self.policy_weight * policy_loss +
self.critic_weight * critic_loss + regularizer)
raw_loss = tf.reduce_mean( # TODO
tf.reduce_sum(not_pad * policy_loss, 0))
gradient_ops = self.training_ops(
loss, learning_rate=self.learning_rate)
tf.summary.histogram('log_probs', tf.reduce_sum(log_probs, 0))
tf.summary.histogram('rewards', tf.reduce_sum(rewards, 0))
tf.summary.scalar('avg_rewards',
tf.reduce_mean(tf.reduce_sum(rewards, 0)))
tf.summary.scalar('policy_loss',
tf.reduce_mean(tf.reduce_sum(not_pad * policy_loss)))
tf.summary.scalar('critic_loss',
tf.reduce_mean(tf.reduce_sum(not_pad * policy_loss)))
tf.summary.scalar('loss', loss)
tf.summary.scalar('raw_loss', raw_loss)
return (loss, raw_loss, future_values,
gradient_ops, tf.summary.merge_all())
class PCL(ActorCritic):
"""PCL implementation.
Implements vanilla PCL, Unified PCL, and Trust PCL depending
on provided inputs.
"""
def get(self, rewards, pads, values, final_values,
log_probs, prev_log_probs, target_log_probs,
entropies, logits,
target_values, final_target_values):
not_pad = 1 - pads
batch_size = tf.shape(rewards)[1]
rewards = not_pad * rewards
value_estimates = not_pad * values
log_probs = not_pad * sum(log_probs)
target_log_probs = not_pad * tf.stop_gradient(sum(target_log_probs))
relative_log_probs = not_pad * (log_probs - target_log_probs)
target_values = not_pad * tf.stop_gradient(target_values)
final_target_values = tf.stop_gradient(final_target_values)
# Prepend.
not_pad = tf.concat([tf.ones([self.rollout - 1, batch_size]),
not_pad], 0)
rewards = tf.concat([tf.zeros([self.rollout - 1, batch_size]),
rewards], 0)
value_estimates = tf.concat(
[self.gamma ** tf.expand_dims(
tf.range(float(self.rollout - 1), 0, -1), 1) *
tf.ones([self.rollout - 1, batch_size]) *
value_estimates[0:1, :],
value_estimates], 0)
log_probs = tf.concat([tf.zeros([self.rollout - 1, batch_size]),
log_probs], 0)
prev_log_probs = tf.concat([tf.zeros([self.rollout - 1, batch_size]),
prev_log_probs], 0)
relative_log_probs = tf.concat([tf.zeros([self.rollout - 1, batch_size]),
relative_log_probs], 0)
target_values = tf.concat(
[self.gamma ** tf.expand_dims(
tf.range(float(self.rollout - 1), 0, -1), 1) *
tf.ones([self.rollout - 1, batch_size]) *
target_values[0:1, :],
target_values], 0)
sum_rewards = discounted_future_sum(rewards, self.gamma, self.rollout)
sum_log_probs = discounted_future_sum(log_probs, self.gamma, self.rollout)
sum_prev_log_probs = discounted_future_sum(prev_log_probs, self.gamma, self.rollout)
sum_relative_log_probs = discounted_future_sum(
relative_log_probs, self.gamma, self.rollout)
if self.use_target_values:
last_values = shift_values(
target_values, self.gamma, self.rollout,
final_target_values)
else:
last_values = shift_values(value_estimates, self.gamma, self.rollout,
final_values)
future_values = (
- self.tau * sum_log_probs
- self.eps_lambda * sum_relative_log_probs
+ sum_rewards + last_values)
baseline_values = value_estimates
adv = tf.stop_gradient(-baseline_values + future_values)
if self.clip_adv:
adv = tf.minimum(self.clip_adv, tf.maximum(-self.clip_adv, adv))
policy_loss = -adv * sum_log_probs
critic_loss = -adv * (baseline_values - last_values)
policy_loss = tf.reduce_mean(
tf.reduce_sum(policy_loss * not_pad, 0))
critic_loss = tf.reduce_mean(
tf.reduce_sum(critic_loss * not_pad, 0))
# loss for gradient calculation
loss = (self.policy_weight * policy_loss +
self.critic_weight * critic_loss)
# actual quantity we're trying to minimize
raw_loss = tf.reduce_mean(
tf.reduce_sum(not_pad * adv * (-baseline_values + future_values), 0))
gradient_ops = self.training_ops(
loss, learning_rate=self.learning_rate)
tf.summary.histogram('log_probs', tf.reduce_sum(log_probs, 0))
tf.summary.histogram('rewards', tf.reduce_sum(rewards, 0))
tf.summary.histogram('future_values', future_values)
tf.summary.histogram('baseline_values', baseline_values)
tf.summary.histogram('advantages', adv)
tf.summary.scalar('avg_rewards',
tf.reduce_mean(tf.reduce_sum(rewards, 0)))
tf.summary.scalar('policy_loss',
tf.reduce_mean(tf.reduce_sum(not_pad * policy_loss)))
tf.summary.scalar('critic_loss',
tf.reduce_mean(tf.reduce_sum(not_pad * policy_loss)))
tf.summary.scalar('loss', loss)
tf.summary.scalar('raw_loss', tf.reduce_mean(raw_loss))
tf.summary.scalar('eps_lambda', self.eps_lambda)
return (loss, raw_loss,
future_values[self.rollout - 1:, :],
gradient_ops, tf.summary.merge_all())
class TRPO(ActorCritic):
"""TRPO."""
def get(self, rewards, pads, values, final_values,
log_probs, prev_log_probs, target_log_probs,
entropies, logits,
target_values, final_target_values):
not_pad = 1 - pads
batch_size = tf.shape(rewards)[1]
rewards = not_pad * rewards
value_estimates = not_pad * values
log_probs = not_pad * sum(log_probs)
prev_log_probs = not_pad * prev_log_probs
target_values = not_pad * tf.stop_gradient(target_values)
final_target_values = tf.stop_gradient(final_target_values)
sum_rewards = discounted_future_sum(rewards, self.gamma, self.rollout)
if self.use_target_values:
last_values = shift_values(
target_values, self.gamma, self.rollout,
final_target_values)
else:
last_values = shift_values(value_estimates, self.gamma, self.rollout,
final_values)
future_values = sum_rewards + last_values
baseline_values = value_estimates
adv = tf.stop_gradient(-baseline_values + future_values)
if self.clip_adv:
adv = tf.minimum(self.clip_adv, tf.maximum(-self.clip_adv, adv))
policy_loss = -adv * tf.exp(log_probs - prev_log_probs)
critic_loss = -adv * baseline_values
policy_loss = tf.reduce_mean(
tf.reduce_sum(policy_loss * not_pad, 0))
critic_loss = tf.reduce_mean(
tf.reduce_sum(critic_loss * not_pad, 0))
raw_loss = policy_loss
# loss for gradient calculation
if self.policy_weight == 0:
policy_loss = 0.0
elif self.critic_weight == 0:
critic_loss = 0.0
loss = (self.policy_weight * policy_loss +
self.critic_weight * critic_loss)
gradient_ops = self.training_ops(
loss, learning_rate=self.learning_rate)
tf.summary.histogram('log_probs', tf.reduce_sum(log_probs, 0))
tf.summary.histogram('rewards', tf.reduce_sum(rewards, 0))
tf.summary.scalar('avg_rewards',
tf.reduce_mean(tf.reduce_sum(rewards, 0)))
tf.summary.scalar('policy_loss',
tf.reduce_mean(tf.reduce_sum(not_pad * policy_loss)))
tf.summary.scalar('critic_loss',
tf.reduce_mean(tf.reduce_sum(not_pad * policy_loss)))
tf.summary.scalar('loss', loss)
tf.summary.scalar('raw_loss', raw_loss)
return (loss, raw_loss, future_values,
gradient_ops, tf.summary.merge_all())
|