Spaces:
Running
Running
File size: 5,347 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for eval_coco_format script."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
from absl.testing import absltest
import evaluation as panopticapi_eval
from deeplab.evaluation import eval_coco_format
_TEST_DIR = 'deeplab/evaluation/testdata'
FLAGS = flags.FLAGS
class EvalCocoFormatTest(absltest.TestCase):
def test_compare_pq_with_reference_eval(self):
sample_data_dir = os.path.join(_TEST_DIR)
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json')
gt_folder = os.path.join(sample_data_dir, 'coco_gt')
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json')
pred_folder = os.path.join(sample_data_dir, 'coco_pred')
panopticapi_results = panopticapi_eval.pq_compute(
gt_json_file, pred_json_file, gt_folder, pred_folder)
deeplab_results = eval_coco_format.eval_coco_format(
gt_json_file,
pred_json_file,
gt_folder,
pred_folder,
metric='pq',
num_categories=7,
ignored_label=0,
max_instances_per_category=256,
intersection_offset=(256 * 256))
self.assertCountEqual(
list(deeplab_results.keys()), ['All', 'Things', 'Stuff'])
for cat_group in ['All', 'Things', 'Stuff']:
self.assertCountEqual(deeplab_results[cat_group], ['pq', 'sq', 'rq', 'n'])
for metric in ['pq', 'sq', 'rq', 'n']:
self.assertAlmostEqual(deeplab_results[cat_group][metric],
panopticapi_results[cat_group][metric])
def test_compare_pc_with_golden_value(self):
sample_data_dir = os.path.join(_TEST_DIR)
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json')
gt_folder = os.path.join(sample_data_dir, 'coco_gt')
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json')
pred_folder = os.path.join(sample_data_dir, 'coco_pred')
deeplab_results = eval_coco_format.eval_coco_format(
gt_json_file,
pred_json_file,
gt_folder,
pred_folder,
metric='pc',
num_categories=7,
ignored_label=0,
max_instances_per_category=256,
intersection_offset=(256 * 256),
normalize_by_image_size=False)
self.assertCountEqual(
list(deeplab_results.keys()), ['All', 'Things', 'Stuff'])
for cat_group in ['All', 'Things', 'Stuff']:
self.assertCountEqual(deeplab_results[cat_group], ['pc', 'n'])
self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68210561)
self.assertEqual(deeplab_results['All']['n'], 6)
self.assertAlmostEqual(deeplab_results['Things']['pc'], 0.5890529)
self.assertEqual(deeplab_results['Things']['n'], 4)
self.assertAlmostEqual(deeplab_results['Stuff']['pc'], 0.86821097)
self.assertEqual(deeplab_results['Stuff']['n'], 2)
def test_compare_pc_with_golden_value_normalize_by_size(self):
sample_data_dir = os.path.join(_TEST_DIR)
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json')
gt_folder = os.path.join(sample_data_dir, 'coco_gt')
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json')
pred_folder = os.path.join(sample_data_dir, 'coco_pred')
deeplab_results = eval_coco_format.eval_coco_format(
gt_json_file,
pred_json_file,
gt_folder,
pred_folder,
metric='pc',
num_categories=7,
ignored_label=0,
max_instances_per_category=256,
intersection_offset=(256 * 256),
normalize_by_image_size=True)
self.assertCountEqual(
list(deeplab_results.keys()), ['All', 'Things', 'Stuff'])
self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68214908840)
def test_pc_with_multiple_workers(self):
sample_data_dir = os.path.join(_TEST_DIR)
gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json')
gt_folder = os.path.join(sample_data_dir, 'coco_gt')
pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json')
pred_folder = os.path.join(sample_data_dir, 'coco_pred')
deeplab_results = eval_coco_format.eval_coco_format(
gt_json_file,
pred_json_file,
gt_folder,
pred_folder,
metric='pc',
num_categories=7,
ignored_label=0,
max_instances_per_category=256,
intersection_offset=(256 * 256),
num_workers=3,
normalize_by_image_size=False)
self.assertCountEqual(
list(deeplab_results.keys()), ['All', 'Things', 'Stuff'])
self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68210561668)
if __name__ == '__main__':
absltest.main()
|