Spaces:
Running
Running
File size: 13,413 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# Copyright 2018 The TensorFlow Global Objectives Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for global objectives util functions."""
# Dependency imports
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from global_objectives import util
def weighted_sigmoid_cross_entropy(targets, logits, weight):
return (weight * targets * np.log(1.0 + np.exp(-logits)) + (
(1.0 - targets) * np.log(1.0 + 1.0 / np.exp(-logits))))
def hinge_loss(labels, logits):
# Mostly copied from tensorflow.python.ops.losses but with loss per datapoint.
labels = tf.to_float(labels)
all_ones = tf.ones_like(labels)
labels = tf.subtract(2 * labels, all_ones)
return tf.nn.relu(tf.subtract(all_ones, tf.multiply(labels, logits)))
class WeightedSigmoidCrossEntropyTest(parameterized.TestCase, tf.test.TestCase):
def testTrivialCompatibilityWithSigmoidCrossEntropy(self):
"""Tests compatibility with unweighted function with weight 1.0."""
x_shape = [300, 10]
targets = np.random.random_sample(x_shape).astype(np.float32)
logits = np.random.randn(*x_shape).astype(np.float32)
weighted_loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets,
logits)
expected_loss = (
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
logits, targets))
with self.test_session():
self.assertAllClose(expected_loss.eval(),
weighted_loss.eval(),
atol=0.000001)
def testNonTrivialCompatibilityWithSigmoidCrossEntropy(self):
"""Tests use of an arbitrary weight (4.12)."""
x_shape = [300, 10]
targets = np.random.random_sample(x_shape).astype(np.float32)
logits = np.random.randn(*x_shape).astype(np.float32)
weight = 4.12
weighted_loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets,
logits,
weight,
weight)
expected_loss = (
weight *
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
logits, targets))
with self.test_session():
self.assertAllClose(expected_loss.eval(),
weighted_loss.eval(),
atol=0.000001)
def testDifferentSizeWeightedSigmoidCrossEntropy(self):
"""Tests correctness on 3D tensors.
Tests that the function works as expected when logits is a 3D tensor and
targets is a 2D tensor.
"""
targets_shape = [30, 4]
logits_shape = [targets_shape[0], targets_shape[1], 3]
targets = np.random.random_sample(targets_shape).astype(np.float32)
logits = np.random.randn(*logits_shape).astype(np.float32)
weight_vector = [2.0, 3.0, 13.0]
loss = util.weighted_sigmoid_cross_entropy_with_logits(targets,
logits,
weight_vector)
with self.test_session():
loss = loss.eval()
for i in range(0, len(weight_vector)):
expected = weighted_sigmoid_cross_entropy(targets, logits[:, :, i],
weight_vector[i])
self.assertAllClose(loss[:, :, i], expected, atol=0.000001)
@parameterized.parameters((300, 10, 0.3), (20, 4, 2.0), (30, 4, 3.9))
def testWeightedSigmoidCrossEntropy(self, batch_size, num_labels, weight):
"""Tests thats the tf and numpy functions agree on many instances."""
x_shape = [batch_size, num_labels]
targets = np.random.random_sample(x_shape).astype(np.float32)
logits = np.random.randn(*x_shape).astype(np.float32)
with self.test_session():
loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets,
logits,
weight,
1.0,
name='weighted-loss')
expected = weighted_sigmoid_cross_entropy(targets, logits, weight)
self.assertAllClose(expected, loss.eval(), atol=0.000001)
def testGradients(self):
"""Tests that weighted loss gradients behave as expected."""
dummy_tensor = tf.constant(1.0)
positives_shape = [10, 1]
positives_logits = dummy_tensor * tf.Variable(
tf.random_normal(positives_shape) + 1.0)
positives_targets = tf.ones(positives_shape)
positives_weight = 4.6
positives_loss = (
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
positives_logits, positives_targets) * positives_weight)
negatives_shape = [190, 1]
negatives_logits = dummy_tensor * tf.Variable(
tf.random_normal(negatives_shape))
negatives_targets = tf.zeros(negatives_shape)
negatives_weight = 0.9
negatives_loss = (
tf.contrib.nn.deprecated_flipped_sigmoid_cross_entropy_with_logits(
negatives_logits, negatives_targets) * negatives_weight)
all_logits = tf.concat([positives_logits, negatives_logits], 0)
all_targets = tf.concat([positives_targets, negatives_targets], 0)
weighted_loss = tf.reduce_sum(
util.weighted_sigmoid_cross_entropy_with_logits(
all_targets, all_logits, positives_weight, negatives_weight))
weighted_gradients = tf.gradients(weighted_loss, dummy_tensor)
expected_loss = tf.add(
tf.reduce_sum(positives_loss),
tf.reduce_sum(negatives_loss))
expected_gradients = tf.gradients(expected_loss, dummy_tensor)
with tf.Session() as session:
tf.global_variables_initializer().run()
grad, expected_grad = session.run(
[weighted_gradients, expected_gradients])
self.assertAllClose(grad, expected_grad)
def testDtypeFlexibility(self):
"""Tests the loss on inputs of varying data types."""
shape = [20, 3]
logits = np.random.randn(*shape)
targets = tf.truncated_normal(shape)
positive_weights = tf.constant(3, dtype=tf.int64)
negative_weights = 1
loss = util.weighted_sigmoid_cross_entropy_with_logits(
targets, logits, positive_weights, negative_weights)
with self.test_session():
self.assertEqual(loss.eval().dtype, np.float)
class WeightedHingeLossTest(tf.test.TestCase):
def testTrivialCompatibilityWithHinge(self):
# Tests compatibility with unweighted hinge loss.
x_shape = [55, 10]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.3))
weighted_loss = util.weighted_hinge_loss(targets, logits)
expected_loss = hinge_loss(targets, logits)
with self.test_session():
self.assertAllClose(expected_loss.eval(), weighted_loss.eval())
def testLessTrivialCompatibilityWithHinge(self):
# Tests compatibility with a constant weight for positives and negatives.
x_shape = [56, 11]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.7))
weight = 1.0 + 1.0/2 + 1.0/3 + 1.0/4 + 1.0/5 + 1.0/6 + 1.0/7
weighted_loss = util.weighted_hinge_loss(targets, logits, weight, weight)
expected_loss = hinge_loss(targets, logits) * weight
with self.test_session():
self.assertAllClose(expected_loss.eval(), weighted_loss.eval())
def testNontrivialCompatibilityWithHinge(self):
# Tests compatibility with different positive and negative weights.
x_shape = [23, 8]
logits_positives = tf.constant(np.random.randn(*x_shape).astype(np.float32))
logits_negatives = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets_positives = tf.ones(x_shape)
targets_negatives = tf.zeros(x_shape)
logits = tf.concat([logits_positives, logits_negatives], 0)
targets = tf.concat([targets_positives, targets_negatives], 0)
raw_loss = util.weighted_hinge_loss(targets,
logits,
positive_weights=3.4,
negative_weights=1.2)
loss = tf.reduce_sum(raw_loss, 0)
positives_hinge = hinge_loss(targets_positives, logits_positives)
negatives_hinge = hinge_loss(targets_negatives, logits_negatives)
expected = tf.add(tf.reduce_sum(3.4 * positives_hinge, 0),
tf.reduce_sum(1.2 * negatives_hinge, 0))
with self.test_session():
self.assertAllClose(loss.eval(), expected.eval())
def test3DLogitsAndTargets(self):
# Tests correctness when logits is 3D and targets is 2D.
targets_shape = [30, 4]
logits_shape = [targets_shape[0], targets_shape[1], 3]
targets = tf.to_float(
tf.constant(np.random.random_sample(targets_shape) > 0.7))
logits = tf.constant(np.random.randn(*logits_shape).astype(np.float32))
weight_vector = [1.0, 1.0, 1.0]
loss = util.weighted_hinge_loss(targets, logits, weight_vector)
with self.test_session():
loss_value = loss.eval()
for i in range(len(weight_vector)):
expected = hinge_loss(targets, logits[:, :, i]).eval()
self.assertAllClose(loss_value[:, :, i], expected)
class BuildLabelPriorsTest(tf.test.TestCase):
def testLabelPriorConsistency(self):
# Checks that, with zero pseudocounts, the returned label priors reproduce
# label frequencies in the batch.
batch_shape = [4, 10]
labels = tf.Variable(
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.678)))
label_priors_update = util.build_label_priors(
labels=labels, positive_pseudocount=0, negative_pseudocount=0)
expected_priors = tf.reduce_mean(labels, 0)
with self.test_session():
tf.global_variables_initializer().run()
self.assertAllClose(label_priors_update.eval(), expected_priors.eval())
def testLabelPriorsUpdate(self):
# Checks that the update of label priors behaves as expected.
batch_shape = [1, 5]
labels = tf.Variable(
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.4)))
label_priors_update = util.build_label_priors(labels)
label_sum = np.ones(shape=batch_shape)
weight_sum = 2.0 * np.ones(shape=batch_shape)
with self.test_session() as session:
tf.global_variables_initializer().run()
for _ in range(3):
label_sum += labels.eval()
weight_sum += np.ones(shape=batch_shape)
expected_posteriors = label_sum / weight_sum
label_priors = label_priors_update.eval().reshape(batch_shape)
self.assertAllClose(label_priors, expected_posteriors)
# Re-initialize labels to get a new random sample.
session.run(labels.initializer)
def testLabelPriorsUpdateWithWeights(self):
# Checks the update of label priors with per-example weights.
batch_size = 6
num_labels = 5
batch_shape = [batch_size, num_labels]
labels = tf.Variable(
tf.to_float(tf.greater(tf.random_uniform(batch_shape), 0.6)))
weights = tf.Variable(tf.random_uniform(batch_shape) * 6.2)
update_op = util.build_label_priors(labels, weights=weights)
expected_weighted_label_counts = 1.0 + tf.reduce_sum(weights * labels, 0)
expected_weight_sum = 2.0 + tf.reduce_sum(weights, 0)
expected_label_posteriors = tf.divide(expected_weighted_label_counts,
expected_weight_sum)
with self.test_session() as session:
tf.global_variables_initializer().run()
updated_priors, expected_posteriors = session.run(
[update_op, expected_label_posteriors])
self.assertAllClose(updated_priors, expected_posteriors)
class WeightedSurrogateLossTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
('hinge', util.weighted_hinge_loss),
('xent', util.weighted_sigmoid_cross_entropy_with_logits))
def testCompatibilityLoss(self, loss_name, loss_fn):
x_shape = [28, 4]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.5))
positive_weights = 0.66
negative_weights = 11.1
expected_loss = loss_fn(
targets,
logits,
positive_weights=positive_weights,
negative_weights=negative_weights)
computed_loss = util.weighted_surrogate_loss(
targets,
logits,
loss_name,
positive_weights=positive_weights,
negative_weights=negative_weights)
with self.test_session():
self.assertAllClose(expected_loss.eval(), computed_loss.eval())
def testSurrogatgeError(self):
x_shape = [7, 3]
logits = tf.constant(np.random.randn(*x_shape).astype(np.float32))
targets = tf.to_float(tf.constant(np.random.random_sample(x_shape) > 0.5))
with self.assertRaises(ValueError):
util.weighted_surrogate_loss(logits, targets, 'bug')
if __name__ == '__main__':
tf.test.main()
|