Spaces:
Running
Running
File size: 21,991 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""KeypointNet!!
A reimplementation of 'Discovery of Latent 3D Keypoints via End-to-end
Geometric Reasoning' keypoint network. Given a single 2D image of a known class,
this network can predict a set of 3D keypoints that are consistent across
viewing angles of the same object and across object instances. These keypoints
and their detectors are discovered and learned automatically without
keypoint location supervision.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy import misc
import sys
import tensorflow as tf
import tensorflow.contrib.slim as slim
import utils
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_boolean("predict", False, "Running inference if true")
tf.app.flags.DEFINE_string(
"input",
"",
"Input folder containing images")
tf.app.flags.DEFINE_string("model_dir", None, "Estimator model_dir")
tf.app.flags.DEFINE_string(
"dset",
"",
"Path to the directory containing the dataset.")
tf.app.flags.DEFINE_integer("steps", 200000, "Training steps")
tf.app.flags.DEFINE_integer("batch_size", 8, "Size of mini-batch.")
tf.app.flags.DEFINE_string(
"hparams", "",
"A comma-separated list of `name=value` hyperparameter values. This flag "
"is used to override hyperparameter settings either when manually "
"selecting hyperparameters or when using Vizier.")
tf.app.flags.DEFINE_integer(
"sync_replicas", -1,
"If > 0, use SyncReplicasOptimizer and use this many replicas per sync.")
# Fixed input size 128 x 128.
vw = vh = 128
def create_input_fn(split, batch_size):
"""Returns input_fn for tf.estimator.Estimator.
Reads tfrecords and construts input_fn for either training or eval. All
tfrecords not in test.txt or dev.txt will be assigned to training set.
Args:
split: A string indicating the split. Can be either 'train' or 'validation'.
batch_size: The batch size!
Returns:
input_fn for tf.estimator.Estimator.
Raises:
IOError: If test.txt or dev.txt are not found.
"""
if (not os.path.exists(os.path.join(FLAGS.dset, "test.txt")) or
not os.path.exists(os.path.join(FLAGS.dset, "dev.txt"))):
raise IOError("test.txt or dev.txt not found")
with open(os.path.join(FLAGS.dset, "test.txt"), "r") as f:
testset = [x.strip() for x in f.readlines()]
with open(os.path.join(FLAGS.dset, "dev.txt"), "r") as f:
validset = [x.strip() for x in f.readlines()]
files = os.listdir(FLAGS.dset)
filenames = []
for f in files:
sp = os.path.splitext(f)
if sp[1] != ".tfrecord" or sp[0] in testset:
continue
if ((split == "validation" and sp[0] in validset) or
(split == "train" and sp[0] not in validset)):
filenames.append(os.path.join(FLAGS.dset, f))
def input_fn():
"""input_fn for tf.estimator.Estimator."""
def parser(serialized_example):
"""Parses a single tf.Example into image and label tensors."""
fs = tf.parse_single_example(
serialized_example,
features={
"img0": tf.FixedLenFeature([], tf.string),
"img1": tf.FixedLenFeature([], tf.string),
"mv0": tf.FixedLenFeature([16], tf.float32),
"mvi0": tf.FixedLenFeature([16], tf.float32),
"mv1": tf.FixedLenFeature([16], tf.float32),
"mvi1": tf.FixedLenFeature([16], tf.float32),
})
fs["img0"] = tf.div(tf.to_float(tf.image.decode_png(fs["img0"], 4)), 255)
fs["img1"] = tf.div(tf.to_float(tf.image.decode_png(fs["img1"], 4)), 255)
fs["img0"].set_shape([vh, vw, 4])
fs["img1"].set_shape([vh, vw, 4])
# fs["lr0"] = [fs["mv0"][0]]
# fs["lr1"] = [fs["mv1"][0]]
fs["lr0"] = tf.convert_to_tensor([fs["mv0"][0]])
fs["lr1"] = tf.convert_to_tensor([fs["mv1"][0]])
return fs
np.random.shuffle(filenames)
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(parser, num_parallel_calls=4)
dataset = dataset.shuffle(400).repeat().batch(batch_size)
dataset = dataset.prefetch(buffer_size=256)
return dataset.make_one_shot_iterator().get_next(), None
return input_fn
class Transformer(object):
"""A utility for projecting 3D points to 2D coordinates and vice versa.
3D points are represented in 4D-homogeneous world coordinates. The pixel
coordinates are represented in normalized device coordinates [-1, 1].
See https://learnopengl.com/Getting-started/Coordinate-Systems.
"""
def __get_matrix(self, lines):
return np.array([[float(y) for y in x.strip().split(" ")] for x in lines])
def __read_projection_matrix(self, filename):
if not os.path.exists(filename):
filename = "/cns/vz-d/home/supasorn/datasets/cars/projection.txt"
with open(filename, "r") as f:
lines = f.readlines()
return self.__get_matrix(lines)
def __init__(self, w, h, dataset_dir):
self.w = w
self.h = h
p = self.__read_projection_matrix(dataset_dir + "projection.txt")
# transposed of inversed projection matrix.
self.pinv_t = tf.constant([[1.0 / p[0, 0], 0, 0,
0], [0, 1.0 / p[1, 1], 0, 0], [0, 0, 1, 0],
[0, 0, 0, 1]])
self.f = p[0, 0]
def project(self, xyzw):
"""Projects homogeneous 3D coordinates to normalized device coordinates."""
z = xyzw[:, :, 2:3] + 1e-8
return tf.concat([-self.f * xyzw[:, :, :2] / z, z], axis=2)
def unproject(self, xyz):
"""Unprojects normalized device coordinates with depth to 3D coordinates."""
z = xyz[:, :, 2:]
xy = -xyz * z
def batch_matmul(a, b):
return tf.reshape(
tf.matmul(tf.reshape(a, [-1, a.shape[2].value]), b),
[-1, a.shape[1].value, a.shape[2].value])
return batch_matmul(
tf.concat([xy[:, :, :2], z, tf.ones_like(z)], axis=2), self.pinv_t)
def meshgrid(h):
"""Returns a meshgrid ranging from [-1, 1] in x, y axes."""
r = np.arange(0.5, h, 1) / (h / 2) - 1
ranx, rany = tf.meshgrid(r, -r)
return tf.to_float(ranx), tf.to_float(rany)
def estimate_rotation(xyz0, xyz1, pconf, noise):
"""Estimates the rotation between two sets of keypoints.
The rotation is estimated by first subtracting mean from each set of keypoints
and computing SVD of the covariance matrix.
Args:
xyz0: [batch, num_kp, 3] The first set of keypoints.
xyz1: [batch, num_kp, 3] The second set of keypoints.
pconf: [batch, num_kp] The weights used to compute the rotation estimate.
noise: A number indicating the noise added to the keypoints.
Returns:
[batch, 3, 3] A batch of transposed 3 x 3 rotation matrices.
"""
xyz0 += tf.random_normal(tf.shape(xyz0), mean=0, stddev=noise)
xyz1 += tf.random_normal(tf.shape(xyz1), mean=0, stddev=noise)
pconf2 = tf.expand_dims(pconf, 2)
cen0 = tf.reduce_sum(xyz0 * pconf2, 1, keepdims=True)
cen1 = tf.reduce_sum(xyz1 * pconf2, 1, keepdims=True)
x = xyz0 - cen0
y = xyz1 - cen1
cov = tf.matmul(tf.matmul(x, tf.matrix_diag(pconf), transpose_a=True), y)
_, u, v = tf.svd(cov, full_matrices=True)
d = tf.matrix_determinant(tf.matmul(v, u, transpose_b=True))
ud = tf.concat(
[u[:, :, :-1], u[:, :, -1:] * tf.expand_dims(tf.expand_dims(d, 1), 1)],
axis=2)
return tf.matmul(ud, v, transpose_b=True)
def relative_pose_loss(xyz0, xyz1, rot, pconf, noise):
"""Computes the relative pose loss (chordal, angular).
Args:
xyz0: [batch, num_kp, 3] The first set of keypoints.
xyz1: [batch, num_kp, 3] The second set of keypoints.
rot: [batch, 4, 4] The ground-truth rotation matrices.
pconf: [batch, num_kp] The weights used to compute the rotation estimate.
noise: A number indicating the noise added to the keypoints.
Returns:
A tuple (chordal loss, angular loss).
"""
r_transposed = estimate_rotation(xyz0, xyz1, pconf, noise)
rotation = rot[:, :3, :3]
frob_sqr = tf.reduce_sum(tf.square(r_transposed - rotation), axis=[1, 2])
frob = tf.sqrt(frob_sqr)
return tf.reduce_mean(frob_sqr), \
2.0 * tf.reduce_mean(tf.asin(tf.minimum(1.0, frob / (2 * math.sqrt(2)))))
def separation_loss(xyz, delta):
"""Computes the separation loss.
Args:
xyz: [batch, num_kp, 3] Input keypoints.
delta: A separation threshold. Incur 0 cost if the distance >= delta.
Returns:
The seperation loss.
"""
num_kp = tf.shape(xyz)[1]
t1 = tf.tile(xyz, [1, num_kp, 1])
t2 = tf.reshape(tf.tile(xyz, [1, 1, num_kp]), tf.shape(t1))
diffsq = tf.square(t1 - t2)
# -> [batch, num_kp ^ 2]
lensqr = tf.reduce_sum(diffsq, axis=2)
return (tf.reduce_sum(tf.maximum(-lensqr + delta, 0.0)) / tf.to_float(
num_kp * FLAGS.batch_size * 2))
def consistency_loss(uv0, uv1, pconf):
"""Computes multi-view consistency loss between two sets of keypoints.
Args:
uv0: [batch, num_kp, 2] The first set of keypoint 2D coordinates.
uv1: [batch, num_kp, 2] The second set of keypoint 2D coordinates.
pconf: [batch, num_kp] The weights used to compute the rotation estimate.
Returns:
The consistency loss.
"""
# [batch, num_kp, 2]
wd = tf.square(uv0 - uv1) * tf.expand_dims(pconf, 2)
wd = tf.reduce_sum(wd, axis=[1, 2])
return tf.reduce_mean(wd)
def variance_loss(probmap, ranx, rany, uv):
"""Computes the variance loss as part of Sillhouette consistency.
Args:
probmap: [batch, num_kp, h, w] The distribution map of keypoint locations.
ranx: X-axis meshgrid.
rany: Y-axis meshgrid.
uv: [batch, num_kp, 2] Keypoint locations (in NDC).
Returns:
The variance loss.
"""
ran = tf.stack([ranx, rany], axis=2)
sh = tf.shape(ran)
# [batch, num_kp, vh, vw, 2]
ran = tf.reshape(ran, [1, 1, sh[0], sh[1], 2])
sh = tf.shape(uv)
uv = tf.reshape(uv, [sh[0], sh[1], 1, 1, 2])
diff = tf.reduce_sum(tf.square(uv - ran), axis=4)
diff *= probmap
return tf.reduce_mean(tf.reduce_sum(diff, axis=[2, 3]))
def dilated_cnn(images, num_filters, is_training):
"""Constructs a base dilated convolutional network.
Args:
images: [batch, h, w, 3] Input RGB images.
num_filters: The number of filters for all layers.
is_training: True if this function is called during training.
Returns:
Output of this dilated CNN.
"""
net = images
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
normalizer_fn=slim.batch_norm,
activation_fn=lambda x: tf.nn.leaky_relu(x, alpha=0.1),
normalizer_params={"is_training": is_training}):
for i, r in enumerate([1, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1]):
net = slim.conv2d(net, num_filters, [3, 3], rate=r, scope="dconv%d" % i)
return net
def orientation_network(images, num_filters, is_training):
"""Constructs a network that infers the orientation of an object.
Args:
images: [batch, h, w, 3] Input RGB images.
num_filters: The number of filters for all layers.
is_training: True if this function is called during training.
Returns:
Output of the orientation network.
"""
with tf.variable_scope("OrientationNetwork"):
net = dilated_cnn(images, num_filters, is_training)
modules = 2
prob = slim.conv2d(net, 2, [3, 3], rate=1, activation_fn=None)
prob = tf.transpose(prob, [0, 3, 1, 2])
prob = tf.reshape(prob, [-1, modules, vh * vw])
prob = tf.nn.softmax(prob)
ranx, rany = meshgrid(vh)
prob = tf.reshape(prob, [-1, 2, vh, vw])
sx = tf.reduce_sum(prob * ranx, axis=[2, 3])
sy = tf.reduce_sum(prob * rany, axis=[2, 3]) # -> batch x modules
out_xy = tf.reshape(tf.stack([sx, sy], -1), [-1, modules, 2])
return out_xy
def keypoint_network(rgba,
num_filters,
num_kp,
is_training,
lr_gt=None,
anneal=1):
"""Constructs our main keypoint network that predicts 3D keypoints.
Args:
rgba: [batch, h, w, 4] Input RGB images with alpha channel.
num_filters: The number of filters for all layers.
num_kp: The number of keypoints.
is_training: True if this function is called during training.
lr_gt: The groundtruth orientation flag used at the beginning of training.
Then we linearly anneal in the prediction.
anneal: A number between [0, 1] where 1 means using the ground-truth
orientation and 0 means using our estimate.
Returns:
uv: [batch, num_kp, 2] 2D locations of keypoints.
z: [batch, num_kp] The depth of keypoints.
orient: [batch, 2, 2] Two 2D coordinates that correspond to [1, 0, 0] and
[-1, 0, 0] in object space.
sill: The Sillhouette loss.
variance: The variance loss.
prob_viz: A visualization of all predicted keypoints.
prob_vizs: A list of visualizations of each keypoint.
"""
images = rgba[:, :, :, :3]
# [batch, 1]
orient = orientation_network(images, num_filters * 0.5, is_training)
# [batch, 1]
lr_estimated = tf.maximum(0.0, tf.sign(orient[:, 0, :1] - orient[:, 1, :1]))
if lr_gt is None:
lr = lr_estimated
else:
lr_gt = tf.maximum(0.0, tf.sign(lr_gt[:, :1]))
lr = tf.round(lr_gt * anneal + lr_estimated * (1 - anneal))
lrtiled = tf.tile(
tf.expand_dims(tf.expand_dims(lr, 1), 1),
[1, images.shape[1], images.shape[2], 1])
images = tf.concat([images, lrtiled], axis=3)
mask = rgba[:, :, :, 3]
mask = tf.cast(tf.greater(mask, tf.zeros_like(mask)), dtype=tf.float32)
net = dilated_cnn(images, num_filters, is_training)
# The probability distribution map.
prob = slim.conv2d(
net, num_kp, [3, 3], rate=1, scope="conv_xy", activation_fn=None)
# We added the fixed camera distance as a bias.
z = -30 + slim.conv2d(
net, num_kp, [3, 3], rate=1, scope="conv_z", activation_fn=None)
prob = tf.transpose(prob, [0, 3, 1, 2])
z = tf.transpose(z, [0, 3, 1, 2])
prob = tf.reshape(prob, [-1, num_kp, vh * vw])
prob = tf.nn.softmax(prob, name="softmax")
ranx, rany = meshgrid(vh)
prob = tf.reshape(prob, [-1, num_kp, vh, vw])
# These are for visualizing the distribution maps.
prob_viz = tf.expand_dims(tf.reduce_sum(prob, 1), 3)
prob_vizs = [tf.expand_dims(prob[:, i, :, :], 3) for i in range(num_kp)]
sx = tf.reduce_sum(prob * ranx, axis=[2, 3])
sy = tf.reduce_sum(prob * rany, axis=[2, 3]) # -> batch x num_kp
# [batch, num_kp]
sill = tf.reduce_sum(prob * tf.expand_dims(mask, 1), axis=[2, 3])
sill = tf.reduce_mean(-tf.log(sill + 1e-12))
z = tf.reduce_sum(prob * z, axis=[2, 3])
uv = tf.reshape(tf.stack([sx, sy], -1), [-1, num_kp, 2])
variance = variance_loss(prob, ranx, rany, uv)
return uv, z, orient, sill, variance, prob_viz, prob_vizs
def model_fn(features, labels, mode, hparams):
"""Returns model_fn for tf.estimator.Estimator."""
del labels
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
t = Transformer(vw, vh, FLAGS.dset)
def func1(x):
return tf.transpose(tf.reshape(features[x], [-1, 4, 4]), [0, 2, 1])
mv = [func1("mv%d" % i) for i in range(2)]
mvi = [func1("mvi%d" % i) for i in range(2)]
uvz = [None] * 2
uvz_proj = [None] * 2 # uvz coordinates projected on to the other view.
viz = [None] * 2
vizs = [None] * 2
loss_sill = 0
loss_variance = 0
loss_con = 0
loss_sep = 0
loss_lr = 0
for i in range(2):
with tf.variable_scope("KeypointNetwork", reuse=i > 0):
# anneal: 1 = using ground-truth, 0 = using our estimate orientation.
anneal = tf.to_float(hparams.lr_anneal_end - tf.train.get_global_step())
anneal = tf.clip_by_value(
anneal / (hparams.lr_anneal_end - hparams.lr_anneal_start), 0.0, 1.0)
uv, z, orient, sill, variance, viz[i], vizs[i] = keypoint_network(
features["img%d" % i],
hparams.num_filters,
hparams.num_kp,
is_training,
lr_gt=features["lr%d" % i],
anneal=anneal)
# x-positive/negative axes (dominant direction).
xp_axis = tf.tile(
tf.constant([[[1.0, 0, 0, 1], [-1.0, 0, 0, 1]]]),
[tf.shape(orient)[0], 1, 1])
# [batch, 2, 4] = [batch, 2, 4] x [batch, 4, 4]
xp = tf.matmul(xp_axis, mv[i])
# [batch, 2, 3]
xp = t.project(xp)
loss_lr += tf.losses.mean_squared_error(orient[:, :, :2], xp[:, :, :2])
loss_variance += variance
loss_sill += sill
uv = tf.reshape(uv, [-1, hparams.num_kp, 2])
z = tf.reshape(z, [-1, hparams.num_kp, 1])
# [batch, num_kp, 3]
uvz[i] = tf.concat([uv, z], axis=2)
world_coords = tf.matmul(t.unproject(uvz[i]), mvi[i])
# [batch, num_kp, 3]
uvz_proj[i] = t.project(tf.matmul(world_coords, mv[1 - i]))
pconf = tf.ones(
[tf.shape(uv)[0], tf.shape(uv)[1]], dtype=tf.float32) / hparams.num_kp
for i in range(2):
loss_con += consistency_loss(uvz_proj[i][:, :, :2], uvz[1 - i][:, :, :2],
pconf)
loss_sep += separation_loss(
t.unproject(uvz[i])[:, :, :3], hparams.sep_delta)
chordal, angular = relative_pose_loss(
t.unproject(uvz[0])[:, :, :3],
t.unproject(uvz[1])[:, :, :3], tf.matmul(mvi[0], mv[1]), pconf,
hparams.noise)
loss = (
hparams.loss_pose * angular +
hparams.loss_con * loss_con +
hparams.loss_sep * loss_sep +
hparams.loss_sill * loss_sill +
hparams.loss_lr * loss_lr +
hparams.loss_variance * loss_variance
)
def touint8(img):
return tf.cast(img * 255.0, tf.uint8)
with tf.variable_scope("output"):
tf.summary.image("0_img0", touint8(features["img0"][:, :, :, :3]))
tf.summary.image("1_combined", viz[0])
for i in range(hparams.num_kp):
tf.summary.image("2_f%02d" % i, vizs[0][i])
with tf.variable_scope("stats"):
tf.summary.scalar("anneal", anneal)
tf.summary.scalar("closs", loss_con)
tf.summary.scalar("seploss", loss_sep)
tf.summary.scalar("angular", angular)
tf.summary.scalar("chordal", chordal)
tf.summary.scalar("lrloss", loss_lr)
tf.summary.scalar("sill", loss_sill)
tf.summary.scalar("vloss", loss_variance)
return {
"loss": loss,
"predictions": {
"img0": features["img0"],
"img1": features["img1"],
"uvz0": uvz[0],
"uvz1": uvz[1]
},
"eval_metric_ops": {
"closs": tf.metrics.mean(loss_con),
"angular_loss": tf.metrics.mean(angular),
"chordal_loss": tf.metrics.mean(chordal),
}
}
def predict(input_folder, hparams):
"""Predicts keypoints on all images in input_folder."""
cols = plt.cm.get_cmap("rainbow")(
np.linspace(0, 1.0, hparams.num_kp))[:, :4]
img = tf.placeholder(tf.float32, shape=(1, 128, 128, 4))
with tf.variable_scope("KeypointNetwork"):
ret = keypoint_network(
img, hparams.num_filters, hparams.num_kp, False)
uv = tf.reshape(ret[0], [-1, hparams.num_kp, 2])
z = tf.reshape(ret[1], [-1, hparams.num_kp, 1])
uvz = tf.concat([uv, z], axis=2)
sess = tf.Session()
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
print("loading model: ", ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
files = [x for x in os.listdir(input_folder)
if x[-3:] in ["jpg", "png"]]
output_folder = os.path.join(input_folder, "output")
if not os.path.exists(output_folder):
os.mkdir(output_folder)
for f in files:
orig = misc.imread(os.path.join(input_folder, f)).astype(float) / 255
if orig.shape[2] == 3:
orig = np.concatenate((orig, np.ones_like(orig[:, :, :1])), axis=2)
uv_ret = sess.run(uvz, feed_dict={img: np.expand_dims(orig, 0)})
utils.draw_ndc_points(orig, uv_ret.reshape(hparams.num_kp, 3), cols)
misc.imsave(os.path.join(output_folder, f), orig)
def _default_hparams():
"""Returns default or overridden user-specified hyperparameters."""
hparams = tf.contrib.training.HParams(
num_filters=64, # Number of filters.
num_kp=10, # Numer of keypoints.
loss_pose=0.2, # Pose Loss.
loss_con=1.0, # Multiview consistency Loss.
loss_sep=1.0, # Seperation Loss.
loss_sill=1.0, # Sillhouette Loss.
loss_lr=1.0, # Orientation Loss.
loss_variance=0.5, # Variance Loss (part of Sillhouette loss).
sep_delta=0.05, # Seperation threshold.
noise=0.1, # Noise added during estimating rotation.
learning_rate=1.0e-3,
lr_anneal_start=30000, # When to anneal in the orientation prediction.
lr_anneal_end=60000, # When to use the prediction completely.
)
if FLAGS.hparams:
hparams = hparams.parse(FLAGS.hparams)
return hparams
def main(argv):
del argv
hparams = _default_hparams()
if FLAGS.predict:
predict(FLAGS.input, hparams)
else:
utils.train_and_eval(
model_dir=FLAGS.model_dir,
model_fn=model_fn,
input_fn=create_input_fn,
hparams=hparams,
steps=FLAGS.steps,
batch_size=FLAGS.batch_size,
save_checkpoints_secs=600,
eval_throttle_secs=1800,
eval_steps=5,
sync_replicas=FLAGS.sync_replicas,
)
if __name__ == "__main__":
sys.excepthook = utils.colored_hook(
os.path.dirname(os.path.realpath(__file__)))
tf.app.run()
|