Spaces:
Running
Running
File size: 8,380 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for pretraining (rotator) as described in PTN paper."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from six.moves import xrange
import tensorflow as tf
import input_generator
import losses
import metrics
import utils
from nets import deeprotator_factory
slim = tf.contrib.slim
def _get_data_from_provider(inputs, batch_size, split_name):
"""Returns dictionary of batch input data processed by tf.train.batch."""
images, masks = tf.train.batch(
[inputs['image'], inputs['mask']],
batch_size=batch_size,
num_threads=8,
capacity=8 * batch_size,
name='batching_queues/%s' % (split_name))
outputs = dict()
outputs['images'] = images
outputs['masks'] = masks
outputs['num_samples'] = inputs['num_samples']
return outputs
def get_inputs(dataset_dir, dataset_name, split_name, batch_size, image_size,
is_training):
"""Loads the given dataset and split."""
del image_size # Unused
with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
common_queue_min = 50
common_queue_capacity = 256
num_readers = 4
inputs = input_generator.get(
dataset_dir,
dataset_name,
split_name,
shuffle=is_training,
num_readers=num_readers,
common_queue_min=common_queue_min,
common_queue_capacity=common_queue_capacity)
return _get_data_from_provider(inputs, batch_size, split_name)
def preprocess(raw_inputs, step_size):
"""Selects the subset of viewpoints to train on."""
shp = raw_inputs['images'].get_shape().as_list()
quantity = shp[0]
num_views = shp[1]
image_size = shp[2]
del image_size # Unused
batch_rot = np.zeros((quantity, 3), dtype=np.float32)
inputs = dict()
for n in xrange(step_size + 1):
inputs['images_%d' % n] = []
inputs['masks_%d' % n] = []
for n in xrange(quantity):
view_in = np.random.randint(0, num_views)
rng_rot = np.random.randint(0, 2)
if step_size == 1:
rng_rot = np.random.randint(0, 3)
delta = 0
if rng_rot == 0:
delta = -1
batch_rot[n, 2] = 1
elif rng_rot == 1:
delta = 1
batch_rot[n, 0] = 1
else:
delta = 0
batch_rot[n, 1] = 1
inputs['images_0'].append(raw_inputs['images'][n, view_in, :, :, :])
inputs['masks_0'].append(raw_inputs['masks'][n, view_in, :, :, :])
view_out = view_in
for k in xrange(1, step_size + 1):
view_out += delta
if view_out >= num_views:
view_out = 0
if view_out < 0:
view_out = num_views - 1
inputs['images_%d' % k].append(raw_inputs['images'][n, view_out, :, :, :])
inputs['masks_%d' % k].append(raw_inputs['masks'][n, view_out, :, :, :])
for n in xrange(step_size + 1):
inputs['images_%d' % n] = tf.stack(inputs['images_%d' % n])
inputs['masks_%d' % n] = tf.stack(inputs['masks_%d' % n])
inputs['actions'] = tf.constant(batch_rot, dtype=tf.float32)
return inputs
def get_init_fn(scopes, params):
"""Initialization assignment operator function used while training."""
if not params.init_model:
return None
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
params.init_model, var_list)
def init_assign_function(sess):
sess.run(init_assign_op, init_feed_dict)
return init_assign_function
def get_model_fn(params, is_training, reuse=False):
return deeprotator_factory.get(params, is_training, reuse)
def get_regularization_loss(scopes, params):
return losses.regularization_loss(scopes, params)
def get_loss(inputs, outputs, params):
"""Computes the rotator loss."""
g_loss = tf.zeros(dtype=tf.float32, shape=[])
if hasattr(params, 'image_weight'):
g_loss += losses.add_rotator_image_loss(inputs, outputs, params.step_size,
params.image_weight)
if hasattr(params, 'mask_weight'):
g_loss += losses.add_rotator_mask_loss(inputs, outputs, params.step_size,
params.mask_weight)
slim.summaries.add_scalar_summary(
g_loss, 'rotator_loss', prefix='losses')
return g_loss
def get_train_op_for_scope(loss, optimizer, scopes, params):
"""Train operation function for the given scope used file training."""
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
update_ops = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
update_ops.extend(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
return slim.learning.create_train_op(
loss,
optimizer,
update_ops=update_ops,
variables_to_train=var_list,
clip_gradient_norm=params.clip_gradient_norm)
def get_metrics(inputs, outputs, params):
"""Aggregate the metrics for rotator model.
Args:
inputs: Input dictionary of the rotator model.
outputs: Output dictionary returned by the rotator model.
params: Hyperparameters of the rotator model.
Returns:
names_to_values: metrics->values (dict).
names_to_updates: metrics->ops (dict).
"""
names_to_values = dict()
names_to_updates = dict()
tmp_values, tmp_updates = metrics.add_image_pred_metrics(
inputs, outputs, params.num_views, 3*params.image_size**2)
names_to_values.update(tmp_values)
names_to_updates.update(tmp_updates)
tmp_values, tmp_updates = metrics.add_mask_pred_metrics(
inputs, outputs, params.num_views, params.image_size**2)
names_to_values.update(tmp_values)
names_to_updates.update(tmp_updates)
for name, value in names_to_values.iteritems():
slim.summaries.add_scalar_summary(
value, name, prefix='eval', print_summary=True)
return names_to_values, names_to_updates
def write_disk_grid(global_step, summary_freq, log_dir, input_images,
output_images, pred_images, pred_masks):
"""Function called by TF to save the prediction periodically."""
def write_grid(grid, global_step):
"""Native python function to call for writing images to files."""
if global_step % summary_freq == 0:
img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
utils.save_image(grid, img_path)
return 0
grid = _build_image_grid(input_images, output_images, pred_images, pred_masks)
slim.summaries.add_image_summary(
tf.expand_dims(grid, axis=0), name='grid_vis')
save_op = tf.py_func(write_grid, [grid, global_step], [tf.int64],
'write_grid')[0]
return save_op
def _build_image_grid(input_images, output_images, pred_images, pred_masks):
"""Builds a grid image by concatenating the input images."""
quantity = input_images.get_shape().as_list()[0]
for row in xrange(int(quantity / 4)):
for col in xrange(4):
index = row * 4 + col
input_img_ = input_images[index, :, :, :]
output_img_ = output_images[index, :, :, :]
pred_img_ = pred_images[index, :, :, :]
pred_mask_ = tf.tile(pred_masks[index, :, :, :], [1, 1, 3])
if col == 0:
tmp_ = tf.concat([input_img_, output_img_, pred_img_, pred_mask_],
1) ## to the right
else:
tmp_ = tf.concat([tmp_, input_img_, output_img_, pred_img_, pred_mask_],
1)
if row == 0:
out_grid = tmp_
else:
out_grid = tf.concat([out_grid, tmp_], 0)
return out_grid
|