Spaces:
Running
Running
File size: 18,250 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
![No Maintenance Intended](https://img.shields.io/badge/No%20Maintenance%20Intended-%E2%9C%95-red.svg)
![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen)
![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg)
# Skip-Thought Vectors
This is a TensorFlow implementation of the model described in:
Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel,
Antonio Torralba, Raquel Urtasun, Sanja Fidler.
[Skip-Thought Vectors](https://papers.nips.cc/paper/5950-skip-thought-vectors.pdf).
*In NIPS, 2015.*
## Contact
***Code author:*** Chris Shallue
***Pull requests and issues:*** @cshallue
## Contents
* [Model Overview](#model-overview)
* [Getting Started](#getting-started)
* [Install Required Packages](#install-required-packages)
* [Download Pretrained Models (Optional)](#download-pretrained-models-optional)
* [Training a Model](#training-a-model)
* [Prepare the Training Data](#prepare-the-training-data)
* [Run the Training Script](#run-the-training-script)
* [Track Training Progress](#track-training-progress)
* [Expanding the Vocabulary](#expanding-the-vocabulary)
* [Overview](#overview)
* [Preparation](#preparation)
* [Run the Vocabulary Expansion Script](#run-the-vocabulary-expansion-script)
* [Evaluating a Model](#evaluating-a-model)
* [Overview](#overview-1)
* [Preparation](#preparation-1)
* [Run the Evaluation Tasks](#run-the-evaluation-tasks)
* [Encoding Sentences](#encoding-sentences)
## Model overview
The *Skip-Thoughts* model is a sentence encoder. It learns to encode input
sentences into a fixed-dimensional vector representation that is useful for many
tasks, for example to detect paraphrases or to classify whether a product review
is positive or negative. See the
[Skip-Thought Vectors](https://papers.nips.cc/paper/5950-skip-thought-vectors.pdf)
paper for details of the model architecture and more example applications.
A trained *Skip-Thoughts* model will encode similar sentences nearby each other
in the embedding vector space. The following examples show the nearest neighbor by
cosine similarity of some sentences from the
[movie review dataset](https://www.cs.cornell.edu/people/pabo/movie-review-data/).
| Input sentence | Nearest Neighbor |
|----------------|------------------|
| Simplistic, silly and tedious. | Trite, banal, cliched, mostly inoffensive. |
| Not so much farcical as sour. | Not only unfunny, but downright repellent. |
| A sensitive and astute first feature by Anne-Sophie Birot. | Absorbing character study by André Turpin . |
| An enthralling, entertaining feature. | A slick, engrossing melodrama. |
## Getting Started
### Install Required Packages
First ensure that you have installed the following required packages:
* **Bazel** ([instructions](http://bazel.build/docs/install.html))
* **TensorFlow** ([instructions](https://www.tensorflow.org/install/))
* **NumPy** ([instructions](http://www.scipy.org/install.html))
* **scikit-learn** ([instructions](http://scikit-learn.org/stable/install.html))
* **Natural Language Toolkit (NLTK)**
* First install NLTK ([instructions](http://www.nltk.org/install.html))
* Then install the NLTK data ([instructions](http://www.nltk.org/data.html))
* **gensim** ([instructions](https://radimrehurek.com/gensim/install.html))
* Only required if you will be expanding your vocabulary with the [word2vec](https://code.google.com/archive/p/word2vec/) model.
### Download Pretrained Models (Optional)
You can download model checkpoints pretrained on the
[BookCorpus](http://yknzhu.wixsite.com/mbweb) dataset in the following
configurations:
* Unidirectional RNN encoder ("uni-skip" in the paper)
* Bidirectional RNN encoder ("bi-skip" in the paper)
```shell
# Directory to download the pretrained models to.
PRETRAINED_MODELS_DIR="${HOME}/skip_thoughts/pretrained/"
mkdir -p ${PRETRAINED_MODELS_DIR}
cd ${PRETRAINED_MODELS_DIR}
# Download and extract the unidirectional model.
wget "http://download.tensorflow.org/models/skip_thoughts_uni_2017_02_02.tar.gz"
tar -xvf skip_thoughts_uni_2017_02_02.tar.gz
rm skip_thoughts_uni_2017_02_02.tar.gz
# Download and extract the bidirectional model.
wget "http://download.tensorflow.org/models/skip_thoughts_bi_2017_02_16.tar.gz"
tar -xvf skip_thoughts_bi_2017_02_16.tar.gz
rm skip_thoughts_bi_2017_02_16.tar.gz
```
You can now skip to the sections [Evaluating a Model](#evaluating-a-model) and
[Encoding Sentences](#encoding-sentences).
## Training a Model
### Prepare the Training Data
To train a model you will need to provide training data in TFRecord format. The
TFRecord format consists of a set of sharded files containing serialized
`tf.Example` protocol buffers. Each `tf.Example` proto contains three
sentences:
* `encode`: The sentence to encode.
* `decode_pre`: The sentence preceding `encode` in the original text.
* `decode_post`: The sentence following `encode` in the original text.
Each sentence is a list of words. During preprocessing, a dictionary is created
that assigns each word in the vocabulary to an integer-valued id. Each sentence
is encoded as a list of integer word ids in the `tf.Example` protos.
We have provided a script to preprocess any set of text-files into this format.
You may wish to use the [BookCorpus](http://yknzhu.wixsite.com/mbweb) dataset.
Note that the preprocessing script may take **12 hours** or more to complete
on this large dataset.
```shell
# Comma-separated list of globs matching the input input files. The format of
# the input files is assumed to be a list of newline-separated sentences, where
# each sentence is already tokenized.
INPUT_FILES="${HOME}/skip_thoughts/bookcorpus/*.txt"
# Location to save the preprocessed training and validation data.
DATA_DIR="${HOME}/skip_thoughts/data"
# Build the preprocessing script.
cd tensorflow-models/skip_thoughts
bazel build -c opt //skip_thoughts/data:preprocess_dataset
# Run the preprocessing script.
bazel-bin/skip_thoughts/data/preprocess_dataset \
--input_files=${INPUT_FILES} \
--output_dir=${DATA_DIR}
```
When the script finishes you will find 100 training files and 1 validation file
in `DATA_DIR`. The files will match the patterns `train-?????-of-00100` and
`validation-00000-of-00001` respectively.
The script will also produce a file named `vocab.txt`. The format of this file
is a list of newline-separated words where the word id is the corresponding 0-
based line index. Words are sorted by descending order of frequency in the input
data. Only the top 20,000 words are assigned unique ids; all other words are
assigned the "unknown id" of 1 in the processed data.
### Run the Training Script
Execute the following commands to start the training script. By default it will
run for 500k steps (around 9 days on a GeForce GTX 1080 GPU).
```shell
# Directory containing the preprocessed data.
DATA_DIR="${HOME}/skip_thoughts/data"
# Directory to save the model.
MODEL_DIR="${HOME}/skip_thoughts/model"
# Build the model.
cd tensorflow-models/skip_thoughts
bazel build -c opt //skip_thoughts/...
# Run the training script.
bazel-bin/skip_thoughts/train \
--input_file_pattern="${DATA_DIR}/train-?????-of-00100" \
--train_dir="${MODEL_DIR}/train"
```
### Track Training Progress
Optionally, you can run the `track_perplexity` script in a separate process.
This will log per-word perplexity on the validation set which allows training
progress to be monitored on
[TensorBoard](https://www.tensorflow.org/get_started/summaries_and_tensorboard).
Note that you may run out of memory if you run the this script on the same GPU
as the training script. You can set the environment variable
`CUDA_VISIBLE_DEVICES=""` to force the script to run on CPU. If it runs too
slowly on CPU, you can decrease the value of `--num_eval_examples`.
```shell
DATA_DIR="${HOME}/skip_thoughts/data"
MODEL_DIR="${HOME}/skip_thoughts/model"
# Ignore GPU devices (only necessary if your GPU is currently memory
# constrained, for example, by running the training script).
export CUDA_VISIBLE_DEVICES=""
# Run the evaluation script. This will run in a loop, periodically loading the
# latest model checkpoint file and computing evaluation metrics.
bazel-bin/skip_thoughts/track_perplexity \
--input_file_pattern="${DATA_DIR}/validation-?????-of-00001" \
--checkpoint_dir="${MODEL_DIR}/train" \
--eval_dir="${MODEL_DIR}/val" \
--num_eval_examples=50000
```
If you started the `track_perplexity` script, run a
[TensorBoard](https://www.tensorflow.org/get_started/summaries_and_tensorboard)
server in a separate process for real-time monitoring of training summaries and
validation perplexity.
```shell
MODEL_DIR="${HOME}/skip_thoughts/model"
# Run a TensorBoard server.
tensorboard --logdir="${MODEL_DIR}"
```
## Expanding the Vocabulary
### Overview
The vocabulary generated by the preprocessing script contains only 20,000 words
which is insufficient for many tasks. For example, a sentence from Wikipedia
might contain nouns that do not appear in this vocabulary.
A solution to this problem described in the
[Skip-Thought Vectors](https://papers.nips.cc/paper/5950-skip-thought-vectors.pdf)
paper is to learn a mapping that transfers word representations from one model to
another. This idea is based on the "Translation Matrix" method from the paper
[Exploiting Similarities Among Languages for Machine Translation](https://arxiv.org/abs/1309.4168).
Specifically, we will load the word embeddings from a trained *Skip-Thoughts*
model and from a trained [word2vec model](https://arxiv.org/pdf/1301.3781.pdf)
(which has a much larger vocabulary). We will train a linear regression model
without regularization to learn a linear mapping from the word2vec embedding
space to the *Skip-Thoughts* embedding space. We will then apply the linear
model to all words in the word2vec vocabulary, yielding vectors in the *Skip-
Thoughts* word embedding space for the union of the two vocabularies.
The linear regression task is to learn a parameter matrix *W* to minimize
*|| X - Y \* W ||<sup>2</sup>*, where *X* is a matrix of *Skip-Thoughts*
embeddings of shape `[num_words, dim1]`, *Y* is a matrix of word2vec embeddings
of shape `[num_words, dim2]`, and *W* is a matrix of shape `[dim2, dim1]`.
### Preparation
First you will need to download and unpack a pretrained
[word2vec model](https://arxiv.org/pdf/1301.3781.pdf) from
[this website](https://code.google.com/archive/p/word2vec/)
([direct download link](https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing)).
This model was trained on the Google News dataset (about 100 billion words).
Also ensure that you have already [installed gensim](https://radimrehurek.com/gensim/install.html).
### Run the Vocabulary Expansion Script
```shell
# Path to checkpoint file or a directory containing checkpoint files (the script
# will select the most recent).
CHECKPOINT_PATH="${HOME}/skip_thoughts/model/train"
# Vocabulary file generated by the preprocessing script.
SKIP_THOUGHTS_VOCAB="${HOME}/skip_thoughts/data/vocab.txt"
# Path to downloaded word2vec model.
WORD2VEC_MODEL="${HOME}/skip_thoughts/googlenews/GoogleNews-vectors-negative300.bin"
# Output directory.
EXP_VOCAB_DIR="${HOME}/skip_thoughts/exp_vocab"
# Build the vocabulary expansion script.
cd tensorflow-models/skip_thoughts
bazel build -c opt //skip_thoughts:vocabulary_expansion
# Run the vocabulary expansion script.
bazel-bin/skip_thoughts/vocabulary_expansion \
--skip_thoughts_model=${CHECKPOINT_PATH} \
--skip_thoughts_vocab=${SKIP_THOUGHTS_VOCAB} \
--word2vec_model=${WORD2VEC_MODEL} \
--output_dir=${EXP_VOCAB_DIR}
```
## Evaluating a Model
### Overview
The model can be evaluated using the benchmark tasks described in the
[Skip-Thought Vectors](https://papers.nips.cc/paper/5950-skip-thought-vectors.pdf)
paper. The following tasks are supported (refer to the paper for full details):
* **SICK** semantic relatedness task.
* **MSRP** (Microsoft Research Paraphrase Corpus) paraphrase detection task.
* Binary classification tasks:
* **MR** movie review sentiment task.
* **CR** customer product review task.
* **SUBJ** subjectivity/objectivity task.
* **MPQA** opinion polarity task.
* **TREC** question-type classification task.
### Preparation
You will need to clone or download the
[skip-thoughts GitHub repository](https://github.com/ryankiros/skip-thoughts) by
[ryankiros](https://github.com/ryankiros) (the first author of the Skip-Thoughts
paper):
```shell
# Folder to clone the repository to.
ST_KIROS_DIR="${HOME}/skip_thoughts/skipthoughts_kiros"
# Clone the repository.
git clone git@github.com:ryankiros/skip-thoughts.git "${ST_KIROS_DIR}/skipthoughts"
# Make the package importable.
export PYTHONPATH="${ST_KIROS_DIR}/:${PYTHONPATH}"
```
You will also need to download the data needed for each evaluation task. See the
instructions [here](https://github.com/ryankiros/skip-thoughts).
For example, the CR (customer review) dataset is found [here](http://nlp.stanford.edu/~sidaw/home/projects:nbsvm). For this task we want the
files `custrev.pos` and `custrev.neg`.
### Run the Evaluation Tasks
In the following example we will evaluate a unidirectional model ("uni-skip" in
the paper) on the CR task. To use a bidirectional model ("bi-skip" in the
paper), simply pass the flags `--bi_vocab_file`, `--bi_embeddings_file` and
`--bi_checkpoint_path` instead. To use the "combine-skip" model described in the
paper you will need to pass both the unidirectional and bidirectional flags.
```shell
# Path to checkpoint file or a directory containing checkpoint files (the script
# will select the most recent).
CHECKPOINT_PATH="${HOME}/skip_thoughts/model/train"
# Vocabulary file generated by the vocabulary expansion script.
VOCAB_FILE="${HOME}/skip_thoughts/exp_vocab/vocab.txt"
# Embeddings file generated by the vocabulary expansion script.
EMBEDDINGS_FILE="${HOME}/skip_thoughts/exp_vocab/embeddings.npy"
# Directory containing files custrev.pos and custrev.neg.
EVAL_DATA_DIR="${HOME}/skip_thoughts/eval_data"
# Build the evaluation script.
cd tensorflow-models/skip_thoughts
bazel build -c opt //skip_thoughts:evaluate
# Run the evaluation script.
bazel-bin/skip_thoughts/evaluate \
--eval_task=CR \
--data_dir=${EVAL_DATA_DIR} \
--uni_vocab_file=${VOCAB_FILE} \
--uni_embeddings_file=${EMBEDDINGS_FILE} \
--uni_checkpoint_path=${CHECKPOINT_PATH}
```
Output:
```python
[0.82539682539682535, 0.84084880636604775, 0.83023872679045096,
0.86206896551724133, 0.83554376657824936, 0.85676392572944293,
0.84084880636604775, 0.83023872679045096, 0.85145888594164454,
0.82758620689655171]
```
The output is a list of accuracies of 10 cross-validation classification models.
To get a single number, simply take the average:
```python
ipython # Launch iPython.
In [0]:
import numpy as np
np.mean([0.82539682539682535, 0.84084880636604775, 0.83023872679045096,
0.86206896551724133, 0.83554376657824936, 0.85676392572944293,
0.84084880636604775, 0.83023872679045096, 0.85145888594164454,
0.82758620689655171])
Out [0]: 0.84009936423729525
```
## Encoding Sentences
In this example we will encode data from the
[movie review dataset](https://www.cs.cornell.edu/people/pabo/movie-review-data/)
(specifically the [sentence polarity dataset v1.0](https://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz)).
```python
ipython # Launch iPython.
In [0]:
# Imports.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os.path
import scipy.spatial.distance as sd
from skip_thoughts import configuration
from skip_thoughts import encoder_manager
In [1]:
# Set paths to the model.
VOCAB_FILE = "/path/to/vocab.txt"
EMBEDDING_MATRIX_FILE = "/path/to/embeddings.npy"
CHECKPOINT_PATH = "/path/to/model.ckpt-9999"
# The following directory should contain files rt-polarity.neg and
# rt-polarity.pos.
MR_DATA_DIR = "/dir/containing/mr/data"
In [2]:
# Set up the encoder. Here we are using a single unidirectional model.
# To use a bidirectional model as well, call load_model() again with
# configuration.model_config(bidirectional_encoder=True) and paths to the
# bidirectional model's files. The encoder will use the concatenation of
# all loaded models.
encoder = encoder_manager.EncoderManager()
encoder.load_model(configuration.model_config(),
vocabulary_file=VOCAB_FILE,
embedding_matrix_file=EMBEDDING_MATRIX_FILE,
checkpoint_path=CHECKPOINT_PATH)
In [3]:
# Load the movie review dataset.
data = []
with open(os.path.join(MR_DATA_DIR, 'rt-polarity.neg'), 'rb') as f:
data.extend([line.decode('latin-1').strip() for line in f])
with open(os.path.join(MR_DATA_DIR, 'rt-polarity.pos'), 'rb') as f:
data.extend([line.decode('latin-1').strip() for line in f])
In [4]:
# Generate Skip-Thought Vectors for each sentence in the dataset.
encodings = encoder.encode(data)
In [5]:
# Define a helper function to generate nearest neighbors.
def get_nn(ind, num=10):
encoding = encodings[ind]
scores = sd.cdist([encoding], encodings, "cosine")[0]
sorted_ids = np.argsort(scores)
print("Sentence:")
print("", data[ind])
print("\nNearest neighbors:")
for i in range(1, num + 1):
print(" %d. %s (%.3f)" %
(i, data[sorted_ids[i]], scores[sorted_ids[i]]))
In [6]:
# Compute nearest neighbors of the first sentence in the dataset.
get_nn(0)
```
Output:
```
Sentence:
simplistic , silly and tedious .
Nearest neighbors:
1. trite , banal , cliched , mostly inoffensive . (0.247)
2. banal and predictable . (0.253)
3. witless , pointless , tasteless and idiotic . (0.272)
4. loud , silly , stupid and pointless . (0.295)
5. grating and tedious . (0.299)
6. idiotic and ugly . (0.330)
7. black-and-white and unrealistic . (0.335)
8. hopelessly inane , humorless and under-inspired . (0.335)
9. shallow , noisy and pretentious . (0.340)
10. . . . unlikable , uninteresting , unfunny , and completely , utterly inept . (0.346)
```
|